Accepted Manuscript

Atomistic modeling of growth and coalescence of helium nano-bubbles in tungsten

R.D. Smirnov, S.I. Krasheninnikov, J. Guterl

PII: S0022-3115(14)00717-X

DOI: http://dx.doi.org/10.1016/j.jnucmat.2014.10.033

Reference: NUMA 48530

To appear in: Journal of Nuclear Materials

Please cite this article as: R.D. Smirnov, S.I. Krasheninnikov, J. Guterl, Atomistic modeling of growth and coalescence of helium nano-bubbles in tungsten, *Journal of Nuclear Materials* (2014), doi: http://dx.doi.org/10.1016/j.jnucmat.2014.10.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Atomistic modeling of growth and coalescence of helium nano-bubbles in

tungsten

R.D. Smirnov^{a,*}, S.I. Krasheninnikov^{a,b}, J. Guterl^a

^a University of California San Diego, La Jolla, California 92093, USA

^b Nuclear Research National University MEPhI, Moscow 115409, Russia

Abstract

The mechanisms of growth and coalescence of helium nano-bubbles in tungsten are

investigated using molecular dynamics simulations. It is shown that crystal symmetries and

governed by them properties of dislocations, generated by the growing nano-bubbles, are

responsible for main nano-bubble features revealed, including non-spherical shape and

anisotropy of surrounding stress field. The transport of helium atoms in non-uniform stress

field is simulated at different temperatures and the transport coefficients are determined. The

implications of the considered dislocation and helium dynamics on nucleation and growth of

bubbles in tungsten with implanted helium are discussed.

PACS: 52.40.Hf, 61.72.Qq, 66.30.Pa, 83.10.Rs

PSI-21 Keywords: Tungsten, Helium, Bubble, Molecular dynamics

Corresponding Author Address: 9500 Gilman Dr., MAE, La Jolla, CA 92093-0411, USA

Corresponding Author e-mail: rsmirnov@ucsd.edu

Presenting Author: Prof. Sergei Krasheninnikov

Presenting Author e-mail: skrash@mae.ucsd.edu

1

Download English Version:

https://daneshyari.com/en/article/7965788

Download Persian Version:

https://daneshyari.com/article/7965788

Daneshyari.com