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a b s t r a c t

The resultant, two-dimensional thermomechanics of shells undergoing diffusionless,

displacive phase transitions of martensitic type of the shell material is developed. In

particular, we extend the resultant surface entropy inequality by introducing two

temperature fields on the shell base surface: the referential mean temperature and its

deviation, with corresponding dual fields: the referential entropy and its deviation.

Additionally, several extra surface fields related to the deviation fields are introduced to

assure that the resultant surface entropy inequality be direct implication of the entropy

inequality of continuum thermomechanics. The corresponding constitutive equations

for thermoelastic and thermoviscoelastic shells of differential type are worked out.

Within this formulation of shell thermomechanics, we also derive the thermodynamic

continuity condition along the curvilinear phase interface and propose the kinetic

equation allowing one to determine position and quasistatic motion of the interface

relative to the base surface. The theoretical model is illustrated by two axisymmetric

numerical examples of stretching and bending of the circular plate undergoing phase

transition within the range of small deformations.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Phase transition (PT) phenomenon in continuous media originally described by Gibbs (1928) was developed in a
number of papers summarised in several recent books for example by Grinfeld (1991), Gurtin (1993, 2000), Romano
(1993), Sun (2002), Bhattacharya (2003), Fischer (2004), Abeyaratne and Knowles (2006), Lagoudas (2008), and Berezovski
et al. (2008). In this approach one assumes existence of the sharp phase interface being a sufficiently regular surface
dividing different material phases. The position and motion of the phase interface itself is among the most discussed issues
in the field. In the literature many model one-dimensional (1D) problems were analysed theoretically, numerically and
experimentally which adequately described behaviour of bars, rods, and beams made of martensitic materials.

Experiments on shape memory alloys and other materials undergoing PT are often performed with thin-walled samples
such as thin strips, rectangular plates or thin tubes, see Li and Sun (2002), He and Sun (2009a,b, 2010a,b), and Sun (2002)
among others. One would expect that two-dimensional (2D) thermomechanics describing the behaviour of thin-walled
structural elements made of materials undergoing PT which is based on the theory of shells was developed long ago. But
this is not the case. To our best knowledge a simple 2D mechanical model of PT in thin films was proposed by Bhattacharya
and James (1999), James and Rizzoni (2000), and Shu (2000), see also Bhattacharya (2003) and Miyazaki et al. (2009).
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The model consists of the Cosserat membrane with one director, but without taking into account bending rigidity of the
membrane. Alternative simple models of PT in biomembranes were proposed by Boulbitch (1999), Agrawal and Steigmann
(2008), and Elliott and Stinner (2010).

The non-linear equilibrium conditions of elastic shells undergoing PT of martensitic type were formulated by Eremeyev
and Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) within the dynamically exact and kinematically unique theory
of shells developed by Libai and Simmonds (1983, 1998) and Chróścielewski et al. (2004). This version of the non-linear
theory of shells has the structure of the classical Cosserat surface with the translation vector u and rotation tensor Q fields
as the only independent variables. By analogy to the 3D case, the two-phase shell was regarded in Eremeyev and
Pietraszkiewicz (2004) and Pietraszkiewicz et al. (2007) as the Cosserat surface consisting of two material phases divided
by a sufficiently smooth surface curve. Existence of such a curve was confirmed by several experiments on thin-walled
samples. For such a general shell model the first 2D thermomechanical model of PT has recently been worked out by
Eremeyev and Pietraszkiewicz (2009).

In this paper we develop the general non-linear thermomechanics of the resultant Cosserat-type shells undergoing
diffusionless (displacive) phase transitions of martensitic type. In particular, we discuss the thermodynamic condition
allowing one to determine position and quasistatic motion of the phase interface on the deformed shell base surface. Here
we use extended thermodynamics of shells based on the introduction of two temperature fields. The theoretical model is
illustrated by example of stretching and bending of the circular plate undergoing phase transition in the case of small
deformations.

2. Kinematics

In the undeformed placement the shell-like body is represented by the base surface M described by the position vector
xðyaÞ, and orientation of M is defined by the unit normal vector gðyaÞ, with fyag, a¼ 1,2, the surface curvilinear coordinates.

Within the dynamically exact and kinematically unique theory of shells summarised in Libai and Simmonds (1998),
Chróścielewski et al. (2004), Eremeyev and Zubov (2008), in the deformed placement the shell is represented by the
position vector y¼ wðxÞ of the deformed material base surface N¼ wðMÞ with attached three directors ðda,dÞ such that

y¼ xþu, da ¼Qx,a, d¼Qg, ð1Þ

where w is the surface deformation function, u 2 E the translation vector of M, and Q 2 SOð3Þ the proper orthogonal tensor,
Q T
¼Q�1, detQ ¼ þ1, representing the work-averaged gross rotation of the shell cross sections from their undeformed

shapes described by ðx,a,gÞ.
In the shell undergoing phase transition it is assumed that above some level of deformation different material phases A

and B may appear in different complementary subregions NA and NB separated by the curvilinear phase interface D 2 N. For
a piecewise differentiable mapping w we can introduce on M a singular image curve C ¼ w�1ðDÞ separating the
corresponding image regions MA ¼ w�1ðNAÞ and MB ¼ w�1ðNBÞ. The position vectors of C and D are related by
xCðsÞ ¼ w�1ðyCðsÞÞ, where s is the arc length parameter along C.

Let us consider a one-parameter family of shell deformations

yðx,tÞ ¼ xþuðx,tÞ, daðx,tÞ ¼Q ðx,tÞx,a, dðx,tÞ ¼Q ðx,tÞgðxÞ, ð2Þ

where t is a time-like scalar parameter such that t¼0 corresponds to the undeformed placement and t to the deformed
one. Then t¼ _u is the virtual translation vector, and x¼ ax ð _Q Q T

Þ the virtual rotation vector, where axð. . .Þ is the axial
vector associated with the skew tensor ð. . .Þ, _ð. . .Þ ¼ d=dtð. . .Þ, while V ¼ _xC � m is the virtual translation component in the
exterior normal direction of the phase curve C, m 2 TxM is the unit external normal vector to C, and m � g¼ 0.

In the general resultant theory of shells considered here the following two strain measures are introduced, see
Chróścielewski et al. (2004), Eremeyev and Pietraszkiewicz (2004, 2006), and Pietraszkiewicz et al. (2005):

E¼ ea � aa, K ¼ ,a � aa, ea ¼ y,a�da, ,a ¼
1

2
di
� Q ,aQ T di, ð3Þ

where (aa,g) and (di) are bases reciprocal to the base ðx,a,gÞ and the base ðda,dÞ, respectively.
The curvilinear phase interfaces in shells can be either coherent or incoherent in rotations, see Eremeyev and

Pietraszkiewicz (2004). For the coherent interface both fields y (or u) and Q are supposed to be continuous at C and the
kinematic compatibility conditions along C become, see Eremeyev and Pietraszkiewicz (2004), Eqs. (31) and (34),

1tUþV1FmU¼ 0, 1xUþV1KmU¼ 0, ð4Þ

where the expression 1 . . .U¼ ð. . . ÞB�ð. . . ÞA means the jump at C.
The phase interface is called incoherent in rotations if only y (or u) is continuous at C but the continuity of Q may be

violated. In this case the condition (4)1 is still satisfied, but (4)2 may be violated, see Eremeyev and Pietraszkiewicz (2004).

3. Equilibrium equations

The balance equations and corresponding dynamic boundary conditions of the general non-linear theory of shells can
be derived exactly by direct through-the-thickness integration of 3D balance laws of linear and angular momentum of

V.A. Eremeyev, W. Pietraszkiewicz / J. Mech. Phys. Solids 59 (2011) 1395–14121396



Download English Version:

https://daneshyari.com/en/article/796739

Download Persian Version:

https://daneshyari.com/article/796739

Daneshyari.com

https://daneshyari.com/en/article/796739
https://daneshyari.com/article/796739
https://daneshyari.com

