ELSEVIER

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

Removal of carbon-14 from irradiated graphite

Mary Lou Dunzik-Gougar*, Tara E. Smith

Idaho State University, 1776 Science Center Dr., Idaho Falls, ID 83401, United States

ARTICLE INFO

Article history: Received 18 July 2013 Accepted 13 March 2014 Available online 18 April 2014

ABSTRACT

Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. On of the isotopes of great concern for long-term disposal of irradiated graphite is carbon-14 (¹⁴C), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates ¹⁴C is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented here is to develop a practical method by which ¹⁴C can be removed. In parallel with these efforts, the same irradiated graphite material is being characterized to identify the chemical form of ¹⁴C in irradiated graphite.

A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam®, were exposed to liquid nitrogen (to increase the quantity of ¹⁴C precursor) and neutron-irradiated (10¹³ neutrons/cm²/s). During post-irradiation thermal treatment, graphite samples were heated in the presence of an inert carrier gas (with or without the addition of an oxidant gas), which carries off gaseous products released during treatment. Graphite gasification occurs via interaction with adsorbed oxygen complexes. Experiments in argon only were performed at 900 °C and 1400 °C to evaluate the selective removal of ¹⁴C. Thermal treatment also was performed with the addition of 3 and 5 vol% oxygen at temperatures 700 °C and 1400 °C. Thermal treatment experiments were evaluated for the effective selective removal of ¹⁴C. Lower temperatures and oxygen levels correlated to more efficient ¹⁴C removal.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For the past 50 years graphite has been widely used as a moderator, reflector, and fuel matrix in a variety of gas-cooled reactors. The result is approximately 250,000 metric tons of irradiated graphite waste [1]. The U.S. and other countries are developing advanced nuclear systems coined "Generation IV concepts" as established by the Generation IV International Forum, which institutes protocol for individual countries to lead the development of a reactor concept in which they have particular interest [2]. The U.S. has pursued research and development of the high temperature gas-cooled reactor (HTGR) under the U.S. Department of Energy's Next Generation Nuclear Plant (NGNP) initiative. The HTGR uses helium coolant, graphite-coated fuel particles, a graphite reflector, and other graphite core structural components [3]. Operational HTGRs would dramatically add to the present quantity of irradiated graphite waste.

Characterization of existing irradiated graphite indicates that a most significant long-lived radioisotope from graphite reactors similar to the HTGR is carbon-14 (¹⁴C). With a half-life of 5730 years this species is of concern for deep geologic disposal of irradiated graphite because it is readily mobile in groundwater and atmospheric systems [4]. Removal of ¹⁴C from large irradiated graphite reactor components may reduce disposal cost, while also allowing the possibility of recycling this very pure nuclear grade material [2]. An understanding of the bonding characteristics, functional groups, location, and concentration of ¹⁴C would contribute to optimizing its removal from irradiated graphite.

1.1. Formation of ¹⁴C

As graphite is bombarded by neutrons, 14 C is produced through neutron capture by carbon-13 (13 C), nitrogen (14 N), and oxygen-17 (17 O) as seen in Eqs. (1)–(3) [4].

$$^{14}N + n \rightarrow ^{14}C + p$$
 (1)

$$^{13}C + n \rightarrow ^{14}C + \gamma \tag{2}$$

$$^{17}O + n \rightarrow ^{14}C + \alpha$$
 (3)

Characterization of existing irradiated reactor graphite revealed that there is a concentration of ¹⁴C on the surfaces of graphite blocks [5]. The concentration of ¹⁴C on the surface is dependent

^{*} Corresponding author. Tel.: +1 208 5699915. E-mail address: mldg@isu.edu (M.L. Dunzik-Gougar).

on its location within the reactor, core design, flux, manufacturing, and environment. The inhomogeneous distribution of ¹⁴C is indicative of the neutron capture of ¹⁴N and ¹⁷O. Graphite naturally adsorbs air; consequently, ¹⁴N and ¹⁷O are readily found on the graphite surface. Oxygen and nitrogen adsorption occurs during graphite manufacturing, component assembly and storage, and as a result of air leaks into the reactor coolant gas. The neutron capture cross sections and isotopic abundances of ¹⁴N and ¹⁷O indicate the neutron activation of ¹⁴N is likely the main source of ¹⁴C on the surfaces of irradiated graphite [5] (see Table 1).

Neutron absorption by ¹³C can also be a significant contributor to the overall ¹⁴C content of irradiated graphite; however, ¹⁴C from this source is more likely homogeneously distributed throughout a graphite component than concentrated on its surface.

1.2. Thermal treatment

When graphite is heated at a constant temperature under forced convection with an inert gas it oxidizes due to the presence of adsorbed air, thus releasing gasified carbon–oxygen compounds (expected primarily as carbon monoxide) [6]. An oxidizing species also can be added to the carrier gas. If optimized, this process could be a viable strategy for graphite waste management given that the ¹⁴C enriched surface oxidizes first.

Graphite oxidation rate is controlled by 3 reaction mechanisms determined largely by temperature. At lower temperatures (less than about $600\,^{\circ}\text{C}$), oxidation kinetics is controlled by the chemical

Table 1 Properties of ¹⁴C precursors.

Species	Capture cross section (Barns)	Isotopic abundance (%)
¹⁴ N	1.8	99.63 (¹⁴ N:N)
¹³ C	0.0015	1.07 (¹³ C:C)
¹⁷ O	0.235	0.04 (¹⁷ O:O)

Table 2 Expected graphite oxidation kinetics regime temperature boundaries.

Regime 1 (°C)	Regime 2 (°C)	Regime 3 (°C)
<(500-700)	>(500–700), <900	900

Table 3Graphite Irradiation.

Graphite	Pre-irradiation liquid N ₂ exposure	Facility	Time (days)	Flux (n/cm²/s)
NBG-18 POCOFoam®	Yes	MURR	120	10 ¹³ -10 ¹⁴

rate of reaction and at higher temperatures (above about 900 °C) kinetics is dominated by diffusion of reactants and products through the product boundary layer. At intermediate temperatures, oxidation rate is controlled by diffusion of reactants and products through graphite porosity. The temperatures of transition between oxidation kinetic regimes are highly dependent on the particular graphite properties and experimental conditions. The estimated transition temperatures are displayed in Table 2 [7]. The optimal temperature, and oxidation regime, for maximum ¹⁴C removal must be determined experimentally.

2. Method

Irradiated and unirradiated samples of nuclear-grade graphite NBG-18, a German-produced medium-grain graphite, and POCOFoam®, a highly porous graphite foam, have been analyzed. The non-nuclear grade foam was chosen for its significant surface area [8]. NBG-18 and POCOFoam® samples were immersed in liquid nitrogen (LN) for 24 h immediately prior to being placed and sealed into a container in ambient air for neutron irradiation. The purpose of LN immersion was to promote nitrogen adsorption and subsequent neutron-induced production of ¹⁴C to ensure measurable quantities on sample surfaces. Typical ¹⁴C concentrations in existing irradiated reactor graphite are on the order of partsper-billion, which is too low for meaningful characterization. Sample irradiation took place at the MURR research reactor at the University of Missouri for 120 days in a thermal neutron flux of 6.7×10^{13} neutrons/cm²/s.

Graphite sample irradiation conditions for this project are summarized in Table 3.

2.1. Thermal treatment

During thermal treatment experiments a pre-weighed graphite sample was placed in the center of the main furnace (Fig. 1). Experimental temperatures (700 °C, 900 °C and 1400 °C) were chosen with the intent of facilitating oxidation via different mechanisms that may affect the selective release of ¹⁴C. Argon carrier gas was flowed through the furnace to transport gasified oxidation products released from the graphite through the system to a collection bottle. In some experiments, the carrier gas was doped with 3 vol% (1.5 sccm) or 5 vol% (2.6 sccm) oxygen gas to increase the amount of graphite oxidation. Argon gas was flowed through the system at 50 standard cubic centimeters per minute (sccm) to carry gasified oxidation products released from the graphite.

A small portion of gas leaving the furnace was diverted to a Hiden quadrupole mass spectrometer gas analyzer before returning to the main gas flow path. The gas analyzer was programmed to monitor for CO, CO₂, Ar, O₂, N₂, H₂O, CH₄, ¹⁴CO, and ¹⁴CO₂. After this analysis all gas flowed through the 800 °C oxidizing furnace where any CO oxidized to CO₂ via reaction with granular copper

Fig. 1. Experimental design for thermal treatment of nuclear graphite to remove ¹⁴C (G.A. is gas analyzer).

Download English Version:

https://daneshyari.com/en/article/7967730

Download Persian Version:

https://daneshyari.com/article/7967730

<u>Daneshyari.com</u>