
Drag reduction by elastic reconfiguration of non-uniform
beams in non-uniform flows

Tristan Leclercq n, Emmanuel de Langre
Department of Mechanics, LadHyX, CNRS, École Polytechnique, 91128 Palaiseau, France

a r t i c l e i n f o

Article history:
Received 11 June 2015
Accepted 18 October 2015
Available online 10 December 2015

Keywords:
Drag reduction
Elastic reconfiguration
Vogel exponent
Non-uniform flow
Self-similarity

a b s t r a c t

Flexible systems bending in steady flows are known to experience a lesser drag compared
to their rigid counterpart. Through a careful dimensional analysis, an analytical expression
of the Vogel exponent quantifying this reduction of drag is derived for cantilever beams,
within a framework based on spatial self-similar modelling of the flow and structural
properties at the clamped edge of the structure. Numerical computations are performed
on various situations, including systems involving more complex distributions of the flow
or structural parameters. The scaling of drag versus flow velocity for large loadings is
shown to be well predicted by fitting the system properties by simple power laws at the
scale of the length on which significant bending occurs. Ultimately, the weak sensitivity of
the Vogel exponent to the parameters of the system provides an explanation to the rather
reduced scattering of the Vogel exponents around �1 observed on most natural systems
in aquatic or aerial vegetation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It has beenwell known, since the seminal work of Vogel (1984), that flexible structures subjected to fast flows experience
a drag F that grows slower with the velocity than if they were rigid. When the velocity U of the flow exceeds a given
threshold, the classical quadratic velocity–drag law that holds for rigid bodies at large Reynolds number changes to a
smaller power law FpU2þ ν characterized by the so-called Vogel exponent ν, which is negative. This phenomenon is for
instance broadly observed in nature. Indeed, plants growing in fast flow environments are very often made of flexible
tissues that bend to comply with the flow, hence lowering the risk of failure by fracture or uprooting.

To get a better understanding of the underlying mechanisms, Alben et al. (2002, 2004) first studied the model problem of
an elastic one dimensional fibre in an inviscid two dimensional flow, both experimentally and numerically. Their study
revealed the importance of a single control parameter, which they call the elastohydrodynamical number, related to the
more commonly used Cauchy number CY (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008), that scales the
competing effects of fluid loading to the elastic restoring force. The model of Alben et al. (2002, 2004) exhibits the expected
transition from the classical rigid-body U2 drag scaling law to a new U4=3 drag law concomitant with the convergence
towards a self-similar shape at large Cauchy numbers. Gosselin et al. (2010) obtained similar results for a finite width plate
with a simplified model of fluid loading. They also managed to predict the same asymptotic drag scaling law from a very
simple dimensional analysis. In order to explain the drag reduction due to the rolling up of daffodil leaves originally
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observed by Vogel (1984), Schouveiler and Boudaoud (2006) obtained theoretical and experimental estimates of the Vogel
exponent for circular plastic sheets cut along a radius. They found a drag scaling as U2=3, while a theoretical and numerical
study by Alben (2010) on the same system concludes that the drag increases as U1. Recent studies have proposed models
that account for additional effects such as gravity (Luhar and Nepf, 2011), viscosity (Zhu and Peskin, 2007; Zhu, 2008), shear
background flow (Henriquez and Barrero-Gil, 2014) or unsteady wake effects due to vortex shedding at the edges (Yang et
al., 2014).

Many experimental measurements made either in the field or in the laboratory have also been able to provide estimates
of the Vogel exponents for systems as diverse as full trees, grasses, flowers, leaves, near-shore marine macrophytes or
freshwater algae. Some quite comprehensive reviews such as Harder et al. (2004) or de Langre et al. (2012) list Vogel
exponents varying in a range around �0.7, between 0 and �1.3 at most for such systems. What is especially striking is not
the scattering of Vogel exponents found for different systems, but much more the robustness of the drag reduction phe-
nomenon with respect to the great variability of structural and flow configurations, and the rather narrow range in which
the Vogel exponents usually lie. From the assumption that the scaling of drag reduction results from the loss of one typical
length scale, de Langre et al. (2012) showed that the Vogel exponent of any structure made of beams and plates (such as
most plants) should exhibit approximately the same behaviour. By a simple dimensional analysis, they recovered the
classical �2/3 Vogel exponent found by Alben et al. (2002, 2004) and Gosselin et al. (2010). They further claimed that non-
linearity in the material constitutive law should have little impact on the scaling of drag. Any possible effect of flow or
structural non-uniformities was however not addressed in this study, and nor was it, to the authors' knowledge, in any other
one, with the only exception of Henriquez and Barrero-Gil (2014) in the specific case of shear flow. A range of models is
clearly missing to fill the gap between the idealized cases above and the more complex natural configurations.

The goal of the present work is to provide a general framework for the derivation of the Vogel exponent of a flexible
beam in the limit of large velocity flows. It includes most possible non-uniformities in the flow or structural parameters, but
it excludes the additional effects of viscosity, unsteadiness in the wake or in the background flow, or other external forces
such as gravity. In some aspects, it is a generalization of the works of Gosselin et al. (2010), de Langre et al. (2012) and Luhar
and Nepf (2011).

In Section 2, the general framework of this study is described. In Section 3, a theoretical analysis of drag reduction of a
system described by self-similar fluid and structural parameters is presented. In Section 4, the results of numerical simu-
lations performed on several practical cases are given. Finally, Section 5 discusses the implications of the present results
regarding the understanding and the predictability of the typical values of the Vogel exponents of actual systems. A
nomenclature of the main variables used throughout this paper is given in Table 1.

2. Model

The model used in this paper is represented in Fig. 1. The elastic body is a cantilever beam of length L bending in the xz-
plane. The width W, thickness D and material stiffness may all vary with the curvilinear coordinate s. The height z(s) and

Table 1
Nomenclature.

L, W(s), D(s) Length, width and thickness of the beam
EI(s) Bending stiffness in the case of linear elasticity
CD(s) Cross-section drag coefficient
ρðzÞ Fluid density distribution
U(z), U0 Flow profile and reference velocity
θðsÞ, κðsÞ Inclination angle of the beam from the vertical axis and curvature
m(s), m0 Internal bending moment and reference value
fn(s) Internal shear force
q(s), q0 Local normal fluid load and reference value
cðθÞ Angular dependence of the normal fluid load
gðκÞ, α Function and exponent associated with the material constitutive law
b(s), b0, β Distribution, reference and exponent associated with the stiffness factor
w(s), w0, γ Distribution, reference and exponent associated with the cross-section shape factor
p(z), p0, μ Distribution, reference and exponent associated with the pressure
ϕ, ψ Geometrical and material parameter
F, Frigid Drag force on the flexible/rigid beam
R Reconfiguration number
CY Cauchy number
ν, ν1 Local and asymptotic Vogel exponents
ℓ Characteristic non-dimensional bending length
LB Characteristic non-dimensional boundary layer thickness
δ Characteristic non-dimensional tapering length
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