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a b s t r a c t

The article presents an analysis of a model describing lateral vibrations of a pipe induced
by fluid flow velocity pulsation. The motion has been described with a set of two non-
linear partial differential equations with periodically variable coefficients. In the analysis
Galerkin method has been applied using orthogonal polynomials as shape function. To
determine instability regions Floquet theory has been employed. The effect of selected
parameters on parametric resonance ranges and regions of increased vibration level has
been investigated. The character and form of vibrations have been investigated indicating
the possibility of excitation of sub-harmonic and quasi-periodic vibrations in the
combination resonance ranges.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The machine power transmission hydraulic system usually consists of an engine driven pump together with a set of
valves, with protection and control function, and operational elements such as hydraulic cylinders, hydraulic motors, etc.
The pipes in such systems transmit power between the particular sub-assemblies. The pipes used are both rigid – steel pipes
and flexible – rubber hoses. The rigid pipes are used to connect elements whose position relative to each other does not
change (e.g. fixed on a common supporting structure). However, frequently some element of hydraulic system (e.g. hydraulic
cylinder) changes its position during the operation and then it is necessary to apply a flexible connection. In such cases, due
to the high pressure of the fluids, flexible hoses made from steel braided synthetic rubber are used. The composite structure
of the hose ensures the resistance to inner pressure while high flexibility is maintained.

One of the main causes of vibrations in hydraulic systems, including vibrations of the pipes, is time variable fluid flow
rate. On the one hand it is a periodic flow pulsation resulting from pump non-uniform delivery or intentional flow rate
control. On the other hand, sudden variations of flow rate may occur resulting from fast opening or closing the valves, which
can result in water hammer effect. Vibrations can cause noise emission, pipes life loss, weakening of joints or other threats
for a hydraulic system.

For certain values of flow parameters (velocity, pressure) larger than the so-called critical values, there may occur
conditions for pipe stability loss due to buckling (Holmes, 1977, 1978). Critical values depend mainly on pipe geometry,
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physical properties of the material and manner of pipe support. At lower values of flow, parametric stability loss can also
take place leading to parametric resonance excitation (Gregory and Païdoussis, 1966a,1966b). For parametric resonance to
occur the velocity of the fluid flowing through the pipe must have a component periodically variable in time. At certain
values of pulsation frequency and pulsation amplitude high enough as well as high flow velocity parametric resonance of
considerable amplitudes are generated.

The dynamics of systems of continuous mass distribution, such as beams, conveyor belts or pipes conveying fluids, is
often described with non-linear partial differential equations with respective boundary and initial conditions. In a general
case the solution of such equations by exact methods is not possible. It is necessary to develop approximate methods of
analysis. The results obtained this way should be verified experimentally.

The first researchers to carry out a correct analysis of a linear model of a pipe with pulsating fluid flow were: Ginsberg
(1973) for a pipe simply supported at both ends, Païdoussis and Issid (1974) for a cantilevered pipe and Païdoussis and
Sundararajan (1975) for a clamped-clamped pipe. The analytical results were confirmed through an experiment (Païdoussis
and Issid, 1976).

Semler et al. (1994) made a comparison of the assumptions adopted in the major studies on non-linear models of pipes
supported at one or both ends. They also provided discussion on the correctness of the equations obtained by various
authors. Païdoussis gave a comprehensive review of the modelling methods and analysis in his monograph (1998).

The problem of non-linear dynamics of conduits with pulsating flow was studied by many scientists. The first to perform
a non-linear analysis of parametric resonance were Yoshizawa et al. (1986), Namachchivaya (1989) and Namachchivaya and
Tien (1989). They employed analytic methods to study the effect of the system’s parameters on principal simple and
combination resonance ranges. Jayaraman and Narayanan (1996) determined the ranges of chaotic vibrations. Gorman et al.
(2000) studied a non-linear model of a pipeline using the finite difference method and the method of characteristics, and
determined flow critical parameters (velocity and hydrodynamic pressure). Öz and Boyaci (2000) determined analytically

Nomenclature

a dimensionless flow pulsation amplitude
A, Ap internal sectional area and cross-sectional area

of a pipe
A state-transition matrix
B, C stiffness and damping matrix
By
ni;C

y
ni linear coefficients of Eq. (33)

Bz
ni;C

z
ni linear coefficients of Eq. (34)

Bzz
nij;C

zz
nij non-linear coefficients of Eq. (33)

Bzy
nij;B

yz
nij;

Bzzz
nijk

dissipative non-linear coefficients of Eq. (34)

Czy
nij;C

zzz
nijk other non-linear coefficients of Eq. (34)

E, E0 Young modulus, Young modulus for θ¼θ0 and
p0¼0

F fundamental matrix
g gravity acceleration due to gravity
Ip cross section moment of inertia
L length of a pipe
mf, mp,
m

elementary mass of fluid, mass of a pipe, mass
of the hose with fluid

M bending moment
M monodromy matrix
p, p0 pressure inside the hose, pressure for x¼L
Q transverse force
rn-m, rn principal resonance, main secondary

resonance
t, τ time, dimensionless time
T, T0 axial force, axial force for x¼L
TS initial tension force
Tp dimensionless excitation period
u(x,t) dimensional axial displacement
U(τ), U0 dimensionless flow velocity and average flow

velocity

Uf(t), Uf0 flow velocity, average flow velocity
v state vector
v1/4, v1/2 dimensionless vibration velocity in points

x¼L/4 and x¼L/2
w(x,t) dimensional transverse displacement
w0(t) kinematic excitation
x, ξ dimensional and dimensionless coordinate

along pipe
y(ξ,τ),
yn(τ)

dimensionless axial displacement

z(ξ,τ),
zn(τ)

dimensionless transverse displacement

z transverse displacement vector
α internal damping coefficient
β mass ratio
Γ dimensionless parameter
ε axial strain
ς dimensionless internal damping coefficient
θ temperature
θv vibration index
κ dimensionless stiffness ratio
μ, μmax Floquet multiplier, maximal Floquet multiplier
ν Poisson ratio
ρ dimensionless inertia ratio
φ angle between x-axis and tangent to the

centerline of the pipe
φn(ξ),
ϕnðξÞ

orthonormal and base polynomial functions
for transverse displacement

ψn(ξ),
ψnðξÞ

orthonormal and base polynomial functions
for axial displacement

Ω pulsation frequency
ω0 reference frequency
ωn dimensionless natural frequency
ωp dimensionless pulsation frequency
ωr dimensionless first natural frequency
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