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a b s t r a c t

In this paper, the extended Hamilton's principle is used to obtain the linear equation of
motion and boundary conditions for a cylinder flexibly supported by a translational and a
rotational spring at the upstream end and free at the other, and subjected to axial flow.
The equation of motion is solved numerically via Galerkin's method for a system in which
the stiffness of the translational spring is infinitely large, while that of the rotational
spring is zero, i.e. a pinned-free cylinder. For such a system, the condition for occurrence
of non-oscillatory rigid-body instability is obtained analytically. Also, the Adomian
Decomposition Method is used to obtain the critical flow velocity for divergence of
pinned-free cylinders analytically. Finally, previously obtained experimental results for
pinned-free cylinders are compared with those obtained numerically using the present
theory.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of dynamics and stability of flexible slender structures in axial flow has generated a great interest among applied
mechanics researchers to-date. Many studies have beenmade, some of which are concerned about specific applications, while most
are curiosity-driven. The first serious study of the system dates back to the late 1950s and was undertaken by Hawthorne (1961),
who proposed the first basic model for the dynamics of a flexible sausage-like tubular body, the so-called Dracone. Later, a series of
theoretical and experimental studies were carried out by Païdoussis (1966a,b, 1968, 1970, 1973) on the dynamics of flexible
cylindrical structures with various boundary conditions, such as clamped–free, simply-supported and towed-free. For clamped–free
and supported-ends cylinders, it was shown that, for sufficiently high flow velocities, the cylinder may be subject to divergence
(buckling) in its first mode and to oscillatory instabilities (i.e. flutter) in higher flexural modes. For a towed flexible cylinder, on the
other hand, it was found that, the cylinder is generally prone to both rigid-body and flexural instabilities, the former occurring at
relatively low towing speeds, while the latter develop at higher speeds; refer to Païdoussis (2004) for a more extensive review.

The emergence of new applications for towed flexible cylinders, e.g. towed ‘acoustic streamers’, has motivated more
recent work in this area; some examples are the studies by Triantafyllou and Chryssostomidis (1984, 1985) on the dynamics
of a clamped–free beam and a pinned-free string and the studies by Dowling (1988a,b) on the dynamics of neutrally and
negatively buoyant elements of a towed system, i.e. the cylinder itself and the towing cable, respectively. These studies in
which the flexural rigidity of the body was either neglected altogether (Triantafyllou and Chryssostomidis, 1985) or only
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partly taken into account (Dowling, 1988a) concluded that a typical acoustic streamer is stable at all towing speeds, a
conclusion which today we know is incorrect (see, for example, de Langre et al., 2007).

Recently, more advanced, systematic theoretical/experimental studies have been undertaken on the dynamics of flexible
cylindrical structures in axial flow. More specifically, in these studies, the previous linear models have been used for
revisiting the problem, e.g. by de Langre et al. (2007) and Kheiri and Païdoussis (2011), or for analyzing the dynamics of
systems in new applications, e.g. by Kheiri et al. (2013b,c); moreover, some nonlinear models have been developed, e.g. by
Lopes et al. (2002), Modarres-Sadeghi et al. (2005), Kheiri et al. (2013a), and new experiments have been conducted, e.g. by
Sudarsan et al. (1997), Païdoussis et al. (2002), Modarres-Sadeghi (2006) and Kheiri et al. (2014a).

In this paper, for the first time, a theoretical model is developed for the dynamics of a flexible, slender cylinder flexibly
supported (i.e. spring-supported) at its upstream end and free downstream. It is, in fact, of fundamental importance to study
the transition in dynamical behaviour between a well-supported cylinder (e.g. clamped–free) and one supported in a flimsy
way, which represents an intermediate but interesting state, approaching a free–free system. The theoretical model
developed in this paper will pave the way for conducting such studies. Here, the dynamics and stability of a pinned-free
cylinder in axial flow is investigated as a particular case in which there is also a more practical interest: a pinned-free
cylinder may be regarded as a limit case of a towed system, as the towrope becomes very short; this has been done by others
before (e.g. Triantafyllou and Chryssostomidis, 1985) but in a simplified manner and in some cases based on flawed
assumptions. It is noted that an exhaustive study is not the intent of this paper; instead, in addition to presenting a versatile
theoretical model, this paper gives the reader an insight on the dynamics of a pinned-free cylinder in axial flow.

The rest of the paper is organized as follows: in Section 2, the equation of motion and boundary conditions are obtained
for a cylinder flexibly restrained by a translational and a rotational spring at the upstream end and free at the other, and
subjected to axial flow. In Section 3, using the derived equations, some numerical and analytical analyses are performed for
pinned-free cylinders, via which the dynamics of such systems is illustrated. In Section 4, some numerical results obtained
with the present theoretical model are compared with experimental results for pinned-free cylinders, previously obtained
by Païdoussis (refer to Païdoussis, 2004, Section 8.9.4).

2. Theory

2.1. Definitions and preliminaries

The system under consideration comprises a flexible cylinder of length L and cross-sectional area A, which is supported
at one end by a translational and a rotational spring and is free at the other. At the free end, the cylinder is terminated by a
short tapering piece (of length ℓ≪L) which is assumed to be rigid. The body is immersed in an incompressible fluid of
density ρ, flowing with uniform velocity U parallel to the x-axis, which coincides with the position of rest of the body (see
Fig. 1). Except for the tapering end-piece, the body is of constant mass per unit length m and flexural rigidity EI; it is further
assumed that the centreline of the cylinder is inextensible1 and that the body is neutrally buoyant (i.e. β¼ 0:5, β being the
ratio of virtual fluid mass2 to the sum of virtual fluid mass and cylinder mass), thus the forces due to gravity and buoyancy
do not come into play.

Nomenclature

A cylinder cross-sectional area
CD zero-flow normal coefficient
CT longitudinal friction drag coefficient
CN normal friction drag coefficient
CTD form-drag coefficient for the end-piece
D cylinder diameter
EI cylinder flexural rigidity
FA inviscid hydrodynamic force per unit length
FL viscous force per unit length in the longitudi-

nal direction
FN viscous force per unit length in the normal

direction

f correction factor for inviscid hydrodynamic
force over the end-piece

L cylinder length
ℓ end-piece length
M fluid added mass per unit length
m cylinder mass per unit length
s curvilinear coordinate along the cylinder

centreline
t time
U mean flow velocity
x axial coordinate
y lateral coordinate
θ angle between the centreline of the deformed

body and the x-axis
ρ fluid density

1 Inextensibility of the centreline means that the distance between two arbitrary points on the centreline remains constant before and after
deformation. In other words, the axial strain due to oscillations is regarded to be negligible.

2 A virtual or added mass is commonly defined, by expressing the fluid loading in the form of a d'Alambert (mass)� (acceleration) term. For a long
cylinder oscillating in unconfined fluid, for example, it is found that the virtual fluid mass is equal to the displaced mass of fluid (refer to Païdoussis, 2014,
Chapter 2).
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