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a b s t r a c t

In this paper, power transfer of an elastically mounted body under the influence of fluid-
elastic galloping is analysed.

The quasi-steady state model equations are first analysed to find suitable governing
parameters. It is shown that, as well as Re, the system is a function of three dimensionless
groups: a combined mass-stiffness parameter, Π1; a combined mass-damping parameter,
Π2; and mass ratio, mn.

Data obtained by numerically integrating the quasi-steady state equations show that for
high values of Π1, the power extracted from the flow is a function of Π2 only. For low values of
Π1, the power extracted is still a strong function of Π2, but is also a weak function of Π1. For all
the cases tested, the power extracted was independent of the value of mn.

These results are then compared to results of direct numerical simulations. It is found that
Π1 has a much stronger impact on the power extracted than predicted by the quasi-steady
state model. The error is shown to be an inverse function of Π1. The failure of the quasi-steady
state model at low Π1 is hypothesised to be due to the stronger influence of vortex shedding,
which is not accounted for in the quasi-steady model. Spectral analysis of the DNS cases at low
Π1 shows a significant response at the vortex shedding frequency. The strength of the vortex
shedding response is also shown to be an inverse function of Π1.

Even though the quasi-steady state model does not accurately predict the power extracted,
it does predict the parameter values at which maximum power transfer occurs reasonably well,
and both the quasi-steady model and the direct numerical simulations show that this value is
basically independent of Π1.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Transverse fluid-elastic galloping is one phenomenon in the broader class of phenomena of fluid structure interactions.
This area has been of interest due to the vibrations created by galloping on transmission lines (Parkinson and Smith, 1964)
and other civil structures, leading to failure either through high peak loads or the cumulative effect of fatigue. Therefore
understanding this phenomenon in order to suppress these vibrations has been an important research task. However, the
search for alternate energy sources with minimal environmental impact has become an important area of research in the
modern world. Therefore researchers are moving towards investigating the possibility of extracting useful energy from

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jfs

Journal of Fluids and Structures

http://dx.doi.org/10.1016/j.jfluidstructs.2015.03.012
0889-9746/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: +60 3 5514 6000.
E-mail address: kasun.jayatunga@monash.edu (H.G.K.G. Jayatunga).

Journal of Fluids and Structures 55 (2015) 384–397

www.sciencedirect.com/science/journal/08899746
www.elsevier.com/locate/jfs
http://dx.doi.org/10.1016/j.jfluidstructs.2015.03.012
http://dx.doi.org/10.1016/j.jfluidstructs.2015.03.012
http://dx.doi.org/10.1016/j.jfluidstructs.2015.03.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2015.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2015.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2015.03.012&domain=pdf
mailto:kasun.jayatunga@monash.edu
http://dx.doi.org/10.1016/j.jfluidstructs.2015.03.012


these vibrations by encouraging rather than suppressing them (Barrero-Gil et al., 2010). Hence, in this paper the power
transfer from the fluid to the body and the governing parameters influencing it are investigated, with a focus on identifying
conditions that lead to optimum power transfer.

According to Païdoussis et al. (2010) and Glauert (1919) provided a criterion for the onset of galloping by considering the
auto-rotation of an aerofoil. DenHartog (1956) provided a theoretical explanation for galloping for iced electric transmission
lines. A weakly non-linear theoretical aeroelastic model to predict the response of galloping was developed by Parkinson
and Smith (1964) based on a quasi-steady state (QSS) hypothesis. This hypothesis simply claims that only the time-mean lift
on the body (averaged over a time much longer than any vortex shedding period) contributes to the dynamics. Lift forces
measured experimentally on a static square prism at different angles of attack were used as an input for the theoretical
model. This relatively simple model achieved a remarkably good agreement with galloping experiments conducted in a
wind tunnel, where the vortex shedding frequency was much higher than the eventual body oscillation frequency, due to
the body being relatively heavy.

However, the QSS model equation, when solved analytically assuming a sinusoidal solution, is not as accurate for cases
where the body is relatively light and is the setup in some fluid-dynamic applications. Joly et al. (2012) observed that finite
element simulations show a sudden change in amplitude below a critical value of the mass ratio mn. The QSS model derived
in Parkinson and Smith (1964) was altered to account for the vortex shedding and solved numerically to predict the reduced
displacement amplitude at low mass ratios to the point where galloping is no longer present. While a reasonable agreement
could be found, the model still required a parameter to be tuned to find the best match.

Most of the literature on galloping using the QSS model has been focused on predicting the displacement amplitude
(Parkinson and Smith, 1964; Joly et al., 2012; Luo et al., 2003). However, it is quite important to analyse the behaviour of the
velocity when studying the power transfer from the fluid to the body. This is because instantaneous power from the fluid
flow to the system is the product of the fluid dynamic force and the velocity of the systemwhile instantaneous power out of
the system is the product of the damping and the velocity of the system. The fluid dynamic force is also modelled to be only
dependent on the velocity of the system. This study also focuses on how well the QSS model performs at high damping at
low Reynolds numbers.

Here, the modified QSS model is integrated numerically and the power transfer from the fluid to the body is investigated,
similar to the study of Barrero-Gil et al. (2010). Two different values of Re are tested: Re¼200, a case that should remain
laminar and closer to two-dimensional behaviour; Re¼22 300, a case where the flow is expected to be turbulent and three-
dimensional. The QSS model requires the lift or transverse force coefficient, Cy as a function of angle of attack θ for a fixed

Nomenclature

a1; a3; a5; a7 coefficients of the polynomial to determine Cy
A displacement amplitude
c damping constant
D characteristic length (side length) of the cross

section of the body
f ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
=2π natural frequency of the system

fg frequency of galloping
fs frequency of vortex shedding
Fy instantaneous force normal to the flow
F0 amplitude of the oscillatory force due to

vortex shedding
F Fourier transform of velocity
k spring constant
m mass of the body
ma added mass
Pd power dissipated due to mechanical damping
Pin ¼ ρU3D=2 energy flux of the approaching flow
Pm dimensionless mean power
Pt power transferred to the body by the fluid
t time
U freestream velocity
Ui induced velocity
y; _y; €y transverse displacement, velocity and accel-

eration of the body

A¼DL frontal area of the body
λ inverse time scale of a galloping domina-

ted flow
λ1;2 eigenvalues of linearised equation of motion
ρ fluid density
ωn ¼ 2πf natural angular frequency of the system
ωs vortex shedding angular frequency
cn ¼ cD=mU non-dimensionalised damping factor
Cy ¼ Fy=0:5ρU2DL normal (lift) force coefficient
mn ¼m=ρD2L mass ratio
Re Reynolds number
Un ¼U=fD reduced velocity
Y¼y/D non-dimensional transverse displacement
_Y ¼mn _y=a1U non-dimensional transverse velocity
€Y ¼mn2D €y=a21U

2 non-dimensional transverse acceleration
Γ1 ¼ 4π2mn2=Un2a21 first dimensionless group arising

from linearised, non-dimensiona-
lised equation of motion

Γ2 ¼ cnmn=a1 second dimensionless group arising from
linearised, non-dimensionalised equation
of motion

ζ¼ c=2mωn damping ratio
θ¼ tan �1ð _y=UÞ instantaneous angle of incidence

(angle of attack)
Π1 ¼ 4π2mn2=Un2 combined mass-stiffness parameter
Π2 ¼ cnmn combined mass-damping parameter
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