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a b s t r a c t

The effect of repairing a crack in an elastic body using an elastic filler is examined in terms

of the stress intensity levels generated at the crack tip. The effect of the filler is to change

the stress field singularity from order 1=r1=2 to 1=rð1�lÞ where r is the distance from the

crack tip, and l is the solution to a simple transcendental equation. The singularity power

ð1� lÞ varies from 1
2 (the unfilled crack limit) to 1 (the fully repaired crack), depending

primarily on the scaled shear modulus ratio gr defined by G2=G1 ¼ gr�; where 2p� is the

(small) crack angle, and the indices (1, 2) refer to base and filler material properties,

respectively. The fully repaired limit is effectively reached for gr � 10, so that fillers with

surprisingly small shear modulus ratios can be effectively used to repair cracks. This fits in

with observations in the mining industry, where materials with G2=G1 of the order of 10�3

have been found to be effective for stabilizing the walls of tunnels. The results are also

relevant for the repair of cracks in thin elastic sheets.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Remarkably thin and relatively elastically weak spray-on liners (TSLs) have been found to be useful for stabilizing the
rock walls of mining tunnels, see Carstens (2005), Stacey and Yu (2004), Kuijpers and Toper (2004), and Wojno and Kuijpers
(1997). Such liners are sprayed onto the rock surface with a typical thickness of 4 mm and are very flexible (Young’s
modulus E typically 0.2 GPa) compared with rock (E typically 70 GPa) so that structural support, as in arching, cannot
explain the phenomenon. Such arching effects decrease in proportion to the thickness of the liner and the ratio of Young’s
modulus, see Mason and Stacey (2008). A number of possible mechanisms have been suggested to explain the effectiveness
of the TSLs, and some preliminary calculations and experiments have been carried out, see Stacey (2001) and Stacey and Yu
(2004). Suggestions include ‘basketing’, promotion of block interlocking, suction support, and stress spreading, and it has
been suggested that such mechanisms may act in concert. Attempts have also been made to numerically model the effect of
coatings on fractured and stressed tunnels, see Wang and Tannant (2004), but the results are not revealing. To date no firm
conclusions can be drawn.

One possible mechanism is that the sprayed on material fills cracks reaching the rock face and in this way reduces stress
intensity levels at the crack tips, thus preventing or inhibiting crack propagation and consequent failure. Additionally the
flexible liner may prevent the crack face separation required for rupture and facilitate the redistribution of stress away from
the crack into the base material. We investigate these issues here. To do this we first obtain asymptotic results for the stress
field in the neighbourhood of the filled crack tip. The stress field singularity is found to be sensitively dependent on the
relative material properties and crack angle. In order to obtain explicit exact results for the effect of the external loading we
then determine modified stress intensity factors for a filled Griffith crack.
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The main results are contained in Section 2. Some concluding remarks and further comments on the significance of the
results obtained in the mining context complete the work in Section 3. The results obtained in this article are also relevant
for the repair of cracks in thin sheets.

2. Wedge solutions

We first determine eigensolutions of the elastic equations in a region O consisting of two infinite adjoining wedges O1 and
O2 with arbitrary solid wedge angles o1 and o2 ¼ 2p�o1 made up of materials with different elastic properties, see Fig. 1.
Later, we investigate the limit as o1 ! 2p and o2 ! 0 to obtain the thin inclusion results. The large wedge angled material
models the cracked rock and the inserted thin wedge models the filler. Although such adjoining wedge problems have been
studied in the past, see Denisyuk (1992), the solution behaviour for the parameter range of particular interest for crack repair
has not been addressed. For the planar situation of interest stresses can be described in terms of the Airy stress function F,
where equilibrium and compatibility conditions require F to be biharmonic. The general solution for F can be obtained by
appropriately combining and matching separated solutions Fi of the biharmonic equation in polar coordinates ðr; yÞ in the two
adjoining wedge domains Oi, we have

Fi ¼ rlþ1ðX1
i cþ þ X2

i c� þ X3
i sþ þ X4

i s�Þ; i ¼ 1;2, (1)

where

c� ¼ cosðl� 1Þy; s� ¼ sinðl� 1Þy (2)

and the coefficients X1
i ; . . . are yet to be determined, see Mitchell (1899), or Timoshenko and Goodier (1970). The associated

stress and displacement fields are given by
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Here ni ¼ ð3� niÞ=ð1þ niÞ for plane stress, and ni ¼ ð3� 4niÞ for plane strain, where ni are Poisson’s ratios, and Gi are the shear
moduli of the materials in the two domains (Ei ¼ 2Gið1þ niÞ). In the mining context the plane strain result is appropriate. The
plane stress situation is appropriate for elastic sheets.

The eigenvalues for l and the corresponding coefficients need to be determined so that the stresses ðsy; tryÞ and the
displacements ður ;uyÞ are continuous across y ¼ �o1=2, the lines of contact between the two wedges O1 and O2, see Fig. 1;
in context the filler is assumed to remain attached to the crack faces. This gives the following homogeneous equations for
the coefficients ðX1
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Fig. 1. Adjoining wedges O1 (with solid angle o1), and O2, with different elastic properties.
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