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A B S T R A C T

A unique correlative approach for automated segmentation of large 3D nanotomography datasets obtained using
Transmission X-ray Microscopy (TXM) in an Al-Cu alloy has been introduced. Automated segmentation using a
Convolutional Neural Network (CNN) architecture based on a deep learning approach was employed. This ex-
tremely versatile technique is capable of emulating the manual segmentation process effectively. Coupling this
technique with post-scanning SEM imaging ensured precise estimation of 3D morphological parameters from
nanotomography. The segmentation process as well as subsequent analysis was expedited by several orders of
magnitude. Quantitative comparison between segmentation performed manually and using the CNN architecture
established the accuracy of this automated technique. Its ability to robustly process ultra-large volumes of data
in relatively small time frames can exponentially accelerate tomographic data analysis, possibly opening up
novel avenues for performing 4D characterization experiments with finer time steps.

1. Introduction

X-ray computed tomography has become an increasingly popular
technique owing to its non-destructive nature and ability to probe large
volumes of material at unprecedented spatial and temporal resolutions.
With the rapid pace of advancement in its use for quantitative 3D
imaging [1], both at synchrotron sources [2–4] and in lab-scale systems
[5–7], there is an ever increasing need to simplify analysis of the large
volumes of acquired data. This need has become even more critical with
the recent advent of 4D characterization (the fourth dimension being
time), which has been instrumental in investigating several funda-
mental phenomena such as initiation, and propagation of failure at high
temperatures [8], dendritic solidification [9] and more recently, mi-
crostructural evolution of nanoscale precipitates at high temperatures
in aluminum alloys [10]. The datasets generated are often quite volu-
minous and their analysis is non-trivial and cumbersome, as it entails
several steps that aim to reduce noise in these image stacks as well as
improve the quality of the desired features present in them. Depending
on whether absorption contrast or phase contrast imaging is im-
plemented, subsequent analysis of the image stacks can vary sig-
nificantly. The latter results in an increased edge contrast and is pri-
marily used for imaging features with comparable attenuation [11]. For

accurate quantification and 3D visualization of the microstructure, the
different features present in the scanned volume need to be classified/
segmented accordingly. Post-processing the acquired 3D image stacks is
widely implemented to ease the process of segmentation. Depending on
the variety of features present and their homogeneity, the wide dis-
tribution of grayscale values in these images need to discretized ac-
cordingly. Presence of artifacts generated during X-ray tomography can
also significantly complicate analysis of such data [12]. In most cases,
these grayscale images from 3D stacks cannot be segmented using
simple thresholding strategies, rendering this task quite challenging as
complexity of the features can require manual intervention, making it
extremely time intensive. Although, to circumvent this issue, a few
studies in the recent past [13–18] have implemented automated
quantitative routines to aid in identification of features based on their
morphological parameters and presented quantitative analyses of 3D
data captured using micro-computed X-ray tomography. More recently,
introduction of semi-automated techniques [19] has rendered seg-
mentation a relatively less laborious process. However, it still remains
impractical to manually segment complete datasets, especially with the
increasing use of 4D characterization and continually improving tem-
poral resolution of data acquisition. As a result of this, segmentation
and analysis is often restricted to small sub-volumes which can result in

https://doi.org/10.1016/j.matchar.2018.05.053
Received 17 January 2018; Received in revised form 21 May 2018; Accepted 28 May 2018

⁎ Corresponding author.
E-mail address: nchawla@asu.edu (N. Chawla).

Materials Characterization 142 (2018) 203–210

Available online 28 May 2018
1044-5803/ © 2018 Published by Elsevier Inc.

T

http://www.sciencedirect.com/science/journal/10445803
https://www.elsevier.com/locate/matchar
https://doi.org/10.1016/j.matchar.2018.05.053
https://doi.org/10.1016/j.matchar.2018.05.053
mailto:nchawla@asu.edu
https://doi.org/10.1016/j.matchar.2018.05.053
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matchar.2018.05.053&domain=pdf


statistically insufficient results. This parochial analysis also hindered
the ability to explore different heterogeneities present and obtain a
thorough understanding of the material system.

With advances in X-ray optics, Transmission X-ray Microscopy
(TXM) has made nanotomography possible at unprecedented spatial
resolutions (20 and 60 nm) [20]. Using unique Fresnel zone plate optics
capable of magnifying radiographs, it is capable of probing materials
non-destructively at the nanoscale [21,22]. This technique was recently
employed by the authors in revealing novel phase transformation re-
actions occurring in aluminum alloys [10] as well in establishing
structure-property relationships between their 3D microstructure and
micromechanical properties [23]. Transmission X-ray Microscopy is
quite promising as it extends the non-destructive capability of X-rays
down to the nanoscale, allowing their utility to span a wide range of
length scales. As features of interest approach spatial resolution limits
of the technique, substantial noise can populate in these images.
Complexity of these nanoscale features as well as presence of multiple
phases in such images demands careful segmentation of these image
stacks. Fortunately, with the recent advent of deep learning [24] and its
use in image classification [25], its application in tomography data
analysis can be quite promising. Its implementation in this field can
make segmentation almost an entirely automated process and its im-
plications can be revolutionary.

A deep neural network approach is utilized in this study to learn the
mapping between the original images and manually segmented image
(s). The trained network is then used to perform automated segmen-
tation on large datasets. This technique can emulate the manual seg-
mentation approach to segment X-ray images with reliable quality and
it can speed up the process by several orders of magnitude.
Convolutional Neural Networks (CNN) is the main branch of deep
learning that was originally developed for pattern recognition [26].
Recently, it has also been used in X-ray image analysis [27]. The CNN
configuration used in this study is similar to that used by Yang et al. in
calibrating the rotation axis for X-ray CT [28]. However, the objective
here is to implement the supervised learning approach [28] to the
segmentation process by using an acquired 2D TXM slice and a corre-
sponding manually segmented (single) image, as training input for the
CNN model. Different hierarchical levels of the trained network are
used to identify features of varying complexity. The trained network is
then used to segment the entire 3D image stack. A schematic of this
workflow has been depicted in Fig. 1.

2. Experimental Procedure

Al-4wt.%Cu wires of 5N purity having a 0.5mm diameter
(Princeton Scientific Corp., Easton, PA, USA) were solution treated at
535 °C for long times to obtain large grain sizes. This was followed by
immediate quenching in ice water and subsequently aged at 350 °C for
45min. These wires were mechanically sharpened to fine tips and mi-
cropillars were fabricated at their tips using a dual-beam Zeiss® Auriga
focused ion beam (FIB) workstation (20 μm in diameter and 40 μm
height). Absorption full-field Transmission X-ray Microscopy (TXM)
was performed at sector 32-ID-C of the Advanced Photon Source (APS),
using a monochromatic beam at 9.1 keV, just above the Cu K-edge to
maximize the contrast between the Al2Cu and Al phases. Using an ultra-
stable stage design, the amplitude of mechanical vibrations was re-
duced to about 4 nm (RMS) and it was possible to extract a sub-60 nm
spatial resolution from the TXM (with a voxel width of 16 nm). A more
detailed description of the stage design [20] and scan details [10] have
been addressed elsewhere. 3D reconstructions were performed using
Tomopy, an open source Python based toolbox used to analyze syn-
chrotron tomography data [29,30]. Subsequent 3D segmentation,
quantification as well as visualization was carried out in Avizo® Fire. A
Python toolbox named Xlearn (https://github.com/tomography/
xlearn) was used to implement the aforementioned CNN model. The
toolbox is based on the Keras and the Theano packages.

For post-scanning imaging using Scanning Electron Microscopy
(SEM), the tip of the sample was cross-sectioned flat using a focused ion
beam at an accelerating voltage of 30 keV and a current of 1 nA.

3. Results and Discussion

The Al-4%Cu alloy's microstructure mainly consists of orthogonal
plate-like θ′ precipitates with a tetragonal crystal structure (Al2Cu)
[31], needle-like bulk θ precipitates (Al2Cu with a different lattice
structure) and coarse grain boundary θ precipitates suspended in the α
Al matrix. On aging, the metastable θ′ phase eventually transforms into
the equilibrium θ phase [10,31]. The relative proportion of each phase
can play a significant role in controlling the alloy's mechanical prop-
erties [32]. The interfacial properties of these precipitates which play
an essential role in their shape determination also vary significantly
[33]. These phases can be easily distinguished owing to their differing
attenuating properties, which aid in their segmentation. Further de-
tailed information on the microstructure of these precipitates can be
found in refs. [34, 35]. To improve the quality of the acquired data,
various image filters were utilized. The stack of images was post-pro-
cessed using a combination of Mean 3D, Bandpass and Non-local means
denoise filters in ImageJ [36] as shown in Fig. 2. These filters were used
cautiously and precipitate dimensions were carefully tracked to ensure
that the edges don't broaden or deplete and that they are not over/
under-estimated. Use of a 3D filter was seen to improve the quality of
the image stacks owing to the three-dimensional nature of the na-
noscale particles. The Bandpass filter was used to normalize the back-
ground and enhance contrast between various phases. The most im-
portant of these is the Non-local means filter [37], which is an edge-
preserving filter that improves the quality of individual features present
in images (improvement in signal to noise ratio) and enhances their
contrast, without distorting their edges. Although these filters aided in
significantly improving data quality, segmentation of different features
in these images would still require manual intervention. From Fig. 3, it
is clearly evident that conventional grayscale thresholding is com-
pletely insufficient as it either leads to over-thresholding (Fig. 3b) or
under-thresholding (Fig. 3c) due to the diffuse edges of particles.
Manual segmentation was performed using a semi-automatic 3D region
growth based technique in Avizo® Fire, as shown in Fig. 3d. It makes
use of the local contrast gradient to select a feature in three dimensions.
These gradients need to be carefully chosen to ensure the particle vo-
lume is appropriately selected in 3D and not over/under estimated. It is
important to note that this process is quite crucial as it could have a
pronounced effect on subsequent quantification of segmented data. It is
also important to note here that this approach is not limited by the
computational resources utilized and only requires significant manual
intervention. To ensure accurate segmentation as well as analysis of 3D
TXM data, a unique correlative approach has been utilized in this study.
As features imaged using Transmission X-ray Microscopy approach the
resolution of the technique itself, imaging and segmenting edges of such
features can be challenging and hence, introduce significant un-
certainties. To overcome this, Scanning Electron Microscopy was im-
plemented to image the same feature and aid in its segmentation. Fol-
lowing scanning using Transmission X-ray Microscopy, the sample was
cross-sectioned normal to the rotation axis using the FIB. SEM Images of
the sectioned surface were then carefully compared to the corre-
sponding slice from the 3D TXM Image stack, as shown in Fig. 4 to
facilitate a 1:1 comparison of the exact same plane. A distinct large
feature of interest was chosen in both the images for comparison pur-
poses. Grayscale intensity line profiles were constructed across the
same interface for both the images. It is quite clearly evident that in-
terfaces are more broad and diffuse in TXM slices when compared to
SEM images, owing to the latter's finer spatial resolution (of about an
order of magnitude). The sharp nature of the interface clearly deline-
ates particle dimensions as seen from the line profile in Fig. 4(b). This is
quite beneficial as it aided in calibrating manual segmentation of
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