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a b s t r a c t

An electromechanical liquid crystal model is developed for characterizing the equilibrium

morphology of a lipid vesicle under coupled mechanical and electrical fields. A general

equation that governs the vesicle shape is established, which incorporates the effects of

elastic bending, osmotic pressure, surface tension, Maxwell pressure, as well as

flexoelectric and dielectric properties of the lipid membrane. As an illustration of the

model, the problem of an axisymmetric vesicle (e.g., a sphere or a cylinder) in a uniform

electric field is considered in some detail, with results in agreement with relevant

experimental results. The model provides an efficient tool for studying morphological

evolution of dielectric vesicles under mechanical and electrical fields.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Living cells can adapt to variations in the micro-environment by continuously altering their shapes and internal
structures (Chen et al., 1997). Mechanical deformation of cells plays a significant role in various biological processes such as
cell growth, differentiation, migration, and even apoptosis (Chen et al., 1997; Huang and Ingber, 1999; Boal, 2002; Schwartz
and Ginsberg, 2002; Lim et al., 2006). For example, compression of chondrocytes was found to modulate proteoglycan
synthesis (Buschmann et al., 1995; Bachrach et al., 1995), while stretching can alter both motility and orientation of cells on
substrates (e.g., Liu, 1998). Red blood cells undergo very large deformation through blood vessels and narrow capillaries. On
one hand, living cells are continuously subjected to mechanical stimulations in the environment. On the other hand,
mechanical loads exerted at the tissue and organ levels are also transmitted to individual cells and influence their
physiological functions (Guilak, 1995; Guilak and Mow, 2000). Mechanical properties of individual cells and their
interactions with the extracellular matrix directly affect the structural integrity of tissue (Wakatsuki et al., 2000; Zahalak
et al., 2000). The behaviors of cells in response to mechanical and electrical fields are of significance not only for gaining
insights into the mechanical properties of cells, but also for understanding those of tissues and organs as a whole.

Recently, much attention has been focused on various phenomena and processes associated with cells and vesicles in
electric fields, e.g., electroporation (Neumann, 1989; Schwan, 1989; Chang and Reese, 1990; Weaver, 1993; Weaver, 2003;
Chen et al., 2006), electrofusion (Cevc and Richardsen, 1999), electrophoresis (Mehrishi and Bauer, 2002), electro-
deformation and rotation (Neumann, 1989; Chassy, 1991; Lipowsky and Sackmann, 1995). Studies on the deformation
behavior of cells under electric fields may provide efficient and quantitative techniques for cell control and manipulation
(McCaig et al., 2005; Voldman, 2006), cell hybridization, cell migration, cell proliferation and differentiation, wound
healing (McCaig et al., 2005), as well as delivery of foreign genes, proteins, antibodies, and drugs into cells (Weaver, 1993;
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Chen et al., 2006). Cells continuously adjust the properties (e.g., polarization property, dielectric property, and electrical
conductivity) of cell membrane in response to surrounding micro-electrical fields to maintain their normal physiological
functions (Zhao et al., 2004; Funk and Monsees, 2006). From this point of view, the morphological evolution of vesicles in
an electric field should be of great interest to the understanding and control of electrophysiological properties of cells.

Continuum models of solids or fluids have often been adopted to study the responses of cells under mechanical forces
(see, e.g., Bao and Suresh, 2003; Dao et al., 2003; Gao et al., 2005; Lim et al., 2006; Shi et al., 2006; and the references
therein). Such models generally smear out the detailed microstructures of cell membrane with an average constitutive
relation. Recently, discrete cytoskeleton models (Ingber, 1998; Boal, 2002) have also been suggested to study the motion
and deformation of cells, in which cell components (e.g., actin filaments and microtubules) are abstracted as a network of
cords, rods, and junctions with certain topological structures. These microstructure-based models manifest certain
nonlinear mechanical behavior of cells (e.g., adhesion, large deformation, and complex dynamic properties of cells).
However, many important properties of cell membranes such as instability, phase transformation, dielectric anisotropy,
and flexoelectric effects have not yet been satisfactorily incorporated.

Using differential geometry and variational principle, Jenkins (1977a, b) derived the shape equation for a vesicle
modeled as a fluid shell resisting bending. Experimental observations have demonstrated that the lipid bilayers of cell
membranes are constructed based on the general principles of liquid crystals (Singer and Nicolson, 1972; Glenn and
Wolken, 1979; Petrov, 1999; de Gennes and Prost, 1994). Therefore, the elastic theory of liquid crystal biomembranes has
been successfully applied to study vesicle morphology, adhesion, and related problems (see, e.g., Seifert and Lipowsky,
1995; Seifert, 1997; Ou-Yang et al., 1999; Tu and Ou-Yang, 2004; Tu et al., 2006). This theory is based on Helfrich’s curvature
energy (Helfrich, 1973)

gH ¼
1
2kð2H þ c0Þ

2
þ kkK , (1)

where k and kk are elastic constants, H is the mean curvature, K the Gauss curvature, and c0 the spontaneous curvature of
membrane. Considering the bending, osmotic pressure and surface tension, Ou-Yang and Helfrich (1989) derived a more
general shape equation of cell membranes:

Dp� 2lH þ kr2ð2HÞ þ kð2H þ c0Þð2H2
� c0H � KÞ ¼ 0, (2)

which gave rise to both axisymmetric (e.g., sphere, column, ellipsoid, anchor ring, and dumbbell shapes) and
nonaxisymmetric vesicle shapes (e.g., starfish, knizocyte, and sickle shapes; Ou-Yang et al., 1999). Similar methods have
been used to study open lipid membranes and vesicles containing intramembrane domains with different elastic properties
(Seifert and Lipowsky, 1995; Julicher and Lipowsky, 1996; Seifert, 1997; Ou-Yang et al., 1999; Capovilla and Guven, 2002; Tu
and Ou-Yang, 2003; Umeda et al., 2005). Further studies have been directed toward the electric effects in vesicle
deformation. Kummrow and Helfrich (1991) tested the deformation of spherical giant vesicles under an electric field and
qualitatively analyzed the bending rigidity of vesicles. Hiroyuki et al. (1991a, b) studied the static and dynamic deformation
of conductive vesicles in connection with Maxwell stresses on the inner and outer walls of the membrane. They concluded
that a vesicle under axisymmetric loading generally possesses oblate or prolate ellipsoidal shapes, depending sensitively on
the relative conductive coefficients inside and outside the vesicle. Based on a thin-shell theory and an energy model, Joshi
et al. (2002a, b) performed a self-consistent theoretical analysis of cellular deformation in response to an applied
quasistatic electric field. They found that although the ellipsoidal morphology can well describe the deformed cell shape at
lower electric fields, the cell experiences large and thickness-dependent deformation at higher electric fields. Fan and
Fedorov (2003) performed an analysis incorporating electrohydrodynamic and surface stress effects to study interactions
between an AFM tip and a biomembrane in a dilute electrolyte solution.

As one of the important intrinsic properties of a liquid crystal system similar to piezoelectricity, the flexoelectric effect
has a large influence on the deformation of cell membranes. Flexoelectricity refers to the coupling between the curvature
and polarization of a membrane, or between the transmembrane voltage and membrane bending stress, which has been
observed in experiments (Raphael et al., 2000) and related to mechanosensitivity and mechanotransduction of living
systems (Petrov, 1999; Petrov, 2001). However, there has been surprisingly little investigation on the effect of
flexoelectricity on the deformation of a cell membrane. Rey (2006) recently proposed a liquid crystal model accounting
for the effects of pressure, tension, bending, torsion, and flexoelectric forces, however neglecting such effects as
electrostatic pressure of the electrolytes and electric conductivity of cell membrane. Experiments have shown that vesicles
can undergo shape transformation between sphere and prolate, prolate and oblate, or oblate and sphere, depending on the
conductivity of medium and field frequency (Dimova et al., 2007). Moreover, when strong electric pulses are applied, some
unusual deformation behaviors of vesicles changing among disc-, square- and tube-like shapes were observed (Riske and
Dimova, 2006). These phenomena cannot be explained by a liquid crystal model that disregards the electrolyte and the
electric conductivity of the cell membrane.

In response to recent advances in experimental observations, the present study is aimed at establishing a more general
electromechanical liquid crystal model of cell membranes based on Eringen’s micropolar theory (Eringen, 2001). The model
accounts for contributions of elastic bending, osmotic pressure, surface tension, flexoelectric and dielectric effects under
various types of mechanical and electrical fields. We will derive a set of general governing equations for the vesicle shape
and make some detailed analysis of axisymmetric vesicles to illustrate the model.
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