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Microstructures were analyzed by an improved texture-based method using gray level co-occurrence matrices
(GLCM). This method is based on a new parameter calculated from the stepwise rotation of images and thereby,
SEM calculating the values independent of the original texture orientation. The proposed method was applied on a
Microstructure characterization database of etched and scanning electron microscopy (SEM)-imaged low-carbon steel microstructures that are
Low-carbon low-alloy steel . . e . .
Lower bainite currently extensively used for automated microstructure classification. The results on the microstructures con-
Lath martensite sisting of pearlitic, lath martensitic and lower bainitic constituents revealed that the method allows a significant
separation of various types of microstructures in the ideal case of square-shaped cutouts. For complete grains of
the corresponding second phases, the results imply that the application of a classifier is advantageous to dis-
tinguish them with a sufficient accuracy. The robustness and workability of the method was further demon-
strated by discussing the effect of varying the image resolution and contrast/brightness settings during image
acquisition. It was shown that such user-dependent setting parameters do not impair the separability of the steel

constituents by using the proposed method.

1. Introduction

For future tasks in energy, infrastructure and safety, materials with
tailored specifications are necessary. The properties of the materials are
controlled by the processing parameters and correlated with the re-
sulting microstructure. In addition to the quantitative analysis of the
arrangement, shape and area of the phases, it is also decisive which
constituents are present in the microstructure. The clear quantification
of these phases is still a big challenge for materials science experts,
especially in the field of low-carbon steels where multiple phases are
present in a single microstructure.

Fast and reliable differentiation between martensite and bainite is
quite problematic and there have been many different approaches to
tackle that problem [1-12]. Although discrimination has been possible
for a long time by using high-resolution electron microscopy on etched
surfaces [12] or in transmission [13-15], these methods are highly cost-
and time-consuming and not conducive for daily industrial practice.
Therefore, indirect techniques have been developed over time with the
aim to make the steel constituents discernible.

Among these, light optical microscopy (LOM) is still the most
readily available technique used for steel quantification. Usually, color
metallography is used to differentiate complex phase mixtures by their
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color appearance [6-9,11,16-18]. The analyzed steels generally have
higher alloy content leading to the characteristic colors but for low-
alloyed steels this is not the case. Because of increased complexity and
decreased size of the constituents, the resolution of LOM is not suffi-
cient any longer to separate the marginal differences between the steel
phases — especially in the case of bainite and martensite.

To overcome the limit of resolution given by LOM, scanning elec-
tron microscope (SEM)-based techniques are increasingly used for steel
characterization. One technique in SEM is electron backscatter dif-
fraction microscopy (EBSD), which has been demonstrated to be a
powerful tool [1,2,4,5,12,19] in steel characterization. In addition to its
higher resolution compared to LOM, it benefits from the fact the steel
transformation products like pearlite, martensite and bainite differ
theoretically - owing to their formation mechanism - in their defect
structure [1]. Moreover, special orientation relationships can be
exploited for a phase separation [12]. For example, Gourges et al. [5]
and Zajac et al. [12] showed that in the particular case of plate steels,
the misorientation profile of martensite and bainite is different. While
upper bainite has a high proportion of low angle misorientation, lower
bainite has most laths misoriented at 55° and larger. The distinction
between lower bainite and martensite is not possible as the mis-
orientation profile is very similar for the two morphologies [5]. One
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drawback of the EBSD technique is its limited sensitivity to fine carbide
precipitation in steel, like cementite. However, they are very important
to identify certain constituents in low-carbon steels [12,19].

Fortunately, recent advance in adequate etching [17] and high-re-
solution imaging in SEM make analysis methods feasible that include
also image texture. This has already been shown to have a high po-
tential for steel microstructure characterization [10,20-23].

Image texture is the “spatial arrangement of color or intensities in an
image” [24] and image texture-based analysis methods have been used
for image analysis in fields like satellite image classification [25-28] or
biomedicine [29]. In the steel community, they can be powerful mi-
crostructure descriptors since they are comparatively fast and in-
expensive. For instance, Gabor filters have been applied to detect defect
structures in steels [30]. By using a multi-dimensional Gabor filter,
quantitative values for feature morphology can be derived and used for
feature classification [31]. This was used for the classification of car-
bide distributions in steel by using LOM images. Consequently, ratios
for the horizontal-to-vertical energy to estimate the degree of carbide
orientation were derived. The fact that the carbides stretched into the
rolling direction was exploited by aligning the sample with respect to
the image horizontal. The complicating issue for substructures of the
various steel constituents is that they do not necessarily orient in the
same direction but form in relation to the crystal orientation of the
parent austenite grain.

Methods using Fourier transformation are reported to be very ef-
fective on regular structure segmentation like pearlite [10] but they fail
for noisy images [32] and therefore, are not applicable for SEM images.
It is reported [33] that image noise has little influence on the perfor-
mance of texture analysis with the so-called gray-level co-occurrence
matrices (GLCM), originally used by Haralick et al. [27]. Fuchs et al.
[21] used the texture feature derived from GLCM to describe the
hardening in steel surfaces. Other authors used it for the segmentation
of LOM micrographs of multiphase steels via a classification step and
reported it to be effective for two-phase steels but not multiphase steels
[10]. Dutta et al. [22] showed that the variation of tempering para-
meters in a fully martensitic steel has a marked influence on the GLCM
features of the image texture of representing SEM micrographs.

The use of GLCM features on etched steel microstructures imaged in
SEM is promising since the gray-level distribution is very different for
the various microstructures on a global scale. Texture features calcu-
lated from GLCM are constructed from pixel neighborhood relations in
the horizontal, vertical or in the direction of the two image diagonals
[27]. As images of the microstructures acquired by microscopy will
naturally scatter in image texture orientation from user-to-user, as well
as because of different crystallographic orientations within one sample,
this will lead to varying texture values even for the same micro-
structures. Rotation-invariant texture descriptors such as the local
binary pattern (LBP) histogram introduced by Ojala et al. [34], can
measure the local texture and contrast, but it cannot capture the higher-
scale information of structure. Guo et al. [35] therefore combined LBP
with a histogram matching to also include global texture orientation
into their classification scheme. The orientationally matched and
shifted LBP histograms could then be classified based on their differ-
ences. But the method will be problematic for textures that do not have
any clear orientation to match, which is the case for many of the steel
microstructures investigated in the present work.

For evaluation and ensuring good comparability of the image tex-
ture of the microscopy images, error-free preparation and adapted
etchings are imperative. Because of that, SEM image data must be
treated carefully. Owing to limited acquisition time, the grayscale
images, which are constructed from point-to-point scanning of an
electron beam over the sample surface and the resulting signal intensity
of the scattered electrons on the detector, also contain the detector
noise. Furthermore, as in the case of the secondary electron contrast,
the image results mainly from surface topography which is not only the
result of the etched microstructure, i.e. grain/lath boundaries and
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precipitation, but also all surface artifacts such as scratches, con-
tamination or (local) over-etching. Therefore, the preparation route of
the metallographer has a big influence on the visual appearance of the
microstructure in SEM. Additionally, etching results depend heavily on
the laboratory environment [36]. Due to these issues, standard seg-
mentation algorithms by simple thresholding are usually ineffective in
separating the microstructural constituents in steel.

Once the etching has been adjusted and an artifact-free preparation
route is established, the regions where the texture analysis will be
performed must be determined. In the case of SEM images of multi-
phase steels with ferritic regions, a threshold level segmentation — ty-
pically used in the quantitative microstructure analysis of LOM images
— is not possible. The reason is that the ferritic regions show different
etch attack corresponding to their crystallographic orientation [37] and
this manifests itself in a fine topography contrast in SEM. Since the
contrast of the substructure in the carbon-rich phase also mainly results
from topography, it is therefore not possible to separate the carbon-rich
constituents from the ferritic regions of steel in SEM images simply by
applying a threshold level.

A way to overcome this limitation in SEM is to combine images
made by different sensors and separate microstructural constituents in a
correlative approach of SEM and LOM, as done by Britz et al. in the case
of two-phase plate steel microstructures comprised of a ferritic matrix
and carbon-rich constituents [38]. Once separated, the substructure of
isolated grains can be analyzed using quantification tools. For example,
Gola et al. used morphological parameters of single grain objects and
their substructure morphology as data to build a classification scheme
via a support vector machine (SVM) [20]. A SVM is a binary classifi-
cation method that takes labeled data from different classes as an input
and outputs a model for classifying new unlabeled data into different
classes [39]. The inclusion of additional image texture information is
promising for further improvement of the SVM performance. In a new
approach using a convolutional neural network, the image textures of
steel microstructures in SEM have been used to detect and classify re-
gions containing different constituents [3].

The goal of this work is to distinguish between different micro-
structures based on an improved Haralick image-texture features
method. The method calculates a rotation-invariant value with a new
approach that uses an image rotation of isolated microstructural ob-
jects. This method is applied to the problem of multi-component steel
characterization to distinguish the typical constituents, pearlite, mar-
tensitic and bainite. The industrial applicability will be discussed by
also considering critical user-dependent settings: image resolution and
image contrast/brightness. By this approach, valuable information for
the distinction of microstructure constituents can be gained.

2. Experimental
2.1. Material

For this study, five images each from six different low-alloyed low-
carbon thermo-mechanically rolled steels were acquired using SEM.
The samples were produced with different final cooling rates and
consisted of two constituents: each ferrite and another carbon-rich steel
constituent. Two ferritic-pearlitic sample sets (P1 and P2), three fer-
ritic-martensitic sample sets (M1, M2 and M3) and one ferritic-bainitic
set (LB) were used. Fig. 1 shows example images for each of the used
sample sets (a full list of all used images is given in the Supplementary
materials). P1 (Fig. 1a) was a pearlite sample with straight lamellae,
whereas P2 (Fig. 1b) had a more irregular pearlitic structure. M1 and
M2 (Fig. 1c and d) are lath martensite samples with smaller martensite
packets inside. This contrasts with M3 (Fig. 1e), where the whole of the
grains seemed to be built up by a single packet and the martensite had a
very regular lath-like structure, which resembled also bainite. LB was a
lower bainitic sample. Fig. 2 displays a higher magnification image of
LB showing intra-lath carbide precipitation typical for lower bainite
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