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A B S T R A C T

Accurately quantifying the microstructure of a heterogeneous material is crucial to establishing quantitative
structure-property relations for material optimization and design. There is a preponderance of previous work
focused on structural quantification based on 2D images and reconstructed 3D volumes obtained via different
imaging techniques. Here, we introduce novel procedures that allow one to extract key structural information in
the form of spatial correlation functions from limited x-ray tomography data. In the case where only a very small
number of x-ray tomographic radiographs (projections) are available, we derive a formalism based on the
Fourier slice theorem to compute angularly averaged correlation functions directly from the radiographs. When
a larger number of projections are available, we develop a procedure to extract full vector-based correlation
functions. The key component of this procedure is the computation of a “probability map,” which provides the
probability of an arbitrary point in the material system belonging to a specific phase, via inverse superposition of
the scaled attenuation intensities available in the tomography projections. The correlation functions of interest
are then computed based on their corresponding probability interpretations from the probability map. The
utilities of both of our procedures are demonstrated by obtaining lower-order correlation functions (including
both the standard two-point correlation functions and non-standard surface functions) for a tin-clay composite
material from both parallel-beam (synchrotron) and cone-beam (lab-scale) x-ray tomography projection data
sets. Our procedure directly transforms the key morphological information contained in limited x-ray tomo-
graphy projections to a more efficient, understandable, and usable form.

1. Introduction

The behavior and performance of an engineering material strongly
depends on its complex microstructures over multiple length scales
[1–3]. Recent developments in advanced imaging techniques such as x-
ray tomography allow one to reveal detailed morphological features
with sub-micrometer resolution and to investigate microstructural
evolution in situ under different external stimuli [4–9]. Accurately
quantifying the microstructure of a heterogeneous material from
available image data is crucial to establishing quantitative structure-
property relations for material optimization and design [10–20]. To this
end, several classes of structure quantification schemes have been de-
veloped.

A widely used class of quantification schemes employs feature-
specific statistics. In these schemes, the morphological features of in-
terest are prescribed, which may include the shape and size of grains or
precipitates [21–23], degree of connectivity of filamentary structures
[24], degree of clustering of reinforcement particles [25], grain

boundary misorientations [26], to name but a few. Accordingly, fea-
ture-specific statistics are employed to quantify the prescribed struc-
tural characteristics. For example, distribution of aspect ratios, effective
radius and geometrical moments are usually utilized to quantify the
grain morphology of a polycrystalline material [21]; while the coeffi-
cients of variation of local near statistics (e.g., nearest neighbor dis-
tance) are widely used to quantify the degree of clustering in particle
reinforced composites [27]. Usually such structural statistics are highly
system specific and generally cannot be utilized to quantify a generic
microstructure. Another commonly used class of schemes borrows the
techniques developed in computational pattern recognition. Specifi-
cally, a given microstructure image is decomposed (typically in Fourier
space) and then is approximated and represented by weighted combi-
nation of a set of “basis” [28–32]. These pattern-recognition based
methods are generic and can be easily applied to any microstructure on
any length scale. However, the “basis” images usually contain random
patterns without clear physical interpretations. In addition, a class of
entropic descriptors has been developed, which identifies distinct local
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features on various length scales in a random microstructure and
quantifies the frequency of occurrence of different local features for
material characterization and reconstruction [33–35].

Recently, a new structure quantification scheme based on spatial
correlation functions has been developed and successfully applied to
model complex material microstructures on different length scales
[17,24,36–51]. The spatial correlation functions are morphological
descriptors that statistically characterize different geometrical and to-
pological features of the materials of interest [3]. For example, the
standard n-point correlation function Sn(x1,…,xn) gives the probability
of finding a specific n-point configuration with all points x1, …, xn fall
into the phase of interests (see Section 2 for a detail discussion). There
are a number of advantages of correlation function-based quantification
scheme: (i) The correlation functions such as Sn are generic but still
possess clear physical interpretations. Certain feature-specific statistics
such as average particle sizes can be directly extracted from the cor-
relation functions. (ii) These statistically descriptors naturally arise in
rigorous structure-property relations and be directly used to predict
material properties for a given microstructure. (iii) Virtual 3D micro-
structures can be easily reconstructed from given correlation functions
[17,29,41–43,52–71]. Recently, a novel hierarchical material infor-
matics framework has been developed incorporating the high-dimen-
sional structural data sets corresponding to generic spatial correlation
function space [72–77].

Although very successful, the preponderance of previous work fo-
cuses on structural quantification based on 2D or 3D material images
obtained via different imaging techniques. In the case of x-ray tomo-
graphy microscopy, tedious segmentations of a grayscale reconstruction
of attenuation coefficient map, obtained from filtered-back-projection
(FBP) [78] or algebraic reconstruction technique (ART) [79], are re-
quired for resolving detailed microstructural features of different
phases. Recently, several efficient “discrete tomography” techniques
have been developed [80–88], which allow one to directly render 3D
virtual material for subsequent analysis. Nonetheless, it is highly de-
sirable to obtain morphological information directly from the raw x-ray
tomography data for microstructure quantification, without explicit 3D
material reconstruction.

In this paper, we present novel procedures that allow one to directly
extract key structural information in forms of spatial correlation func-
tions from limited x-ray tomography data. In the case where only a very
small number of x-ray tomographic radiographs (projections) are
available, we derive a formalism based on the Fourier slice theorem to
compute angularly averaged correlation functions directly from the
radiographs. When a larger number of projections are available, we
develop a procedure to extract full vector-based correlation functions.
The key component of the latter procedure is the computation of a
“probability map”, which provides the probability of an arbitrary point
in the material system belonging to the specific phase of interest. Such a
probability map can be computed via inverse superposition (i.e., taking
arithmetic average) of the properly scaled attenuation intensities
available in the tomography projections. The correlation functions of
interest are then computed from the probability map, based on their
probability interpretations. The utilities of our procedures are demon-
strated by obtaining lower-order correlation functions (including both
the standard n-point correlation functions and non-standard surface
functions) for a heterogeneous material with tin spheres in a clay ma-
trix. Both parallel-beam (synchrotron) and cone-beam (lab-scale) x-ray
tomography projection data sets are used to compute the correlation
functions. Our procedure directly transforms the key morphological
information contained in limited x-ray tomography projections to a
more understandable and usable form and opens new avenues for uti-
lizing limited tomography data.

The rest of the paper is organized as follows: In Section 2, we pro-
vide fundamental definitions of the correlation functions employed in
this work. In Section 3, we describe the procedure for directly ex-
tracting angularly average correlation functions from very limited x-ray

tomographic data using Fourier slice theorem (i.e., the “Fourier-slice”
approach). In Section 4, we respectively describe the method for com-
puting the probability map and obtaining correlation functions from the
corresponding probability map (i.e., the “probability-map” approach).
In Section 5, we employ the both procedures to quantify a tin-sphere-
clay microstructure form both limited synchrotron and lab-scale data
sets. Concluding remarks are provided in Section 6.

2. Definition of Correlation Functions

2.1. Standard n-point Correlation Function

In general, the microstructure of a heterogeneous material can be
determined by specifying the indicator functions associated with all of
the individual phases of the material [3]. Without loss of generality, we
focus on two-phase materials (binary medium) in this work. The gen-
eralization of the subsequent discussion to a multiple-phase system is
straightforward.

Consider a two-phase heterogeneous material with volume V in ei-
ther two- or three-dimensional space. This material contains two dis-
joint phase regions: phase 1 denoted by set V1 with volume fraction φ1,
and phase 2 denoted by set V2 with volume fraction φ2. Based on the
nature of the two-phase material, it is clear that V1 ∪ V2= V and
V1 ∩ V2= 0. In the following discussions, we consider phase 1 as our
phase of interest, and the indicator function I(1)(x) of phase 1 is given by
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The indicator function I(2)(x) for phase 2 can be defined in a similar
fashion, and it is obvious that
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The n-point correlation function (or n-point probability function)
Sn(1) for phase 1 is then defined as:
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where the angular brackets “⟨…⟩” denote ensemble averaging over
independent realizations of the random material. The two-point cor-
relation (probability) function S2(1) can be directly derived from Eq. (3),
i.e.,
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If the material system is statistically homogeneous, i.e., the joint
probability distributions describing the random microstructure are in-
variant under a translation (shift) of the space origin, S2(1) is a function
of the relative displacements, i.e.,
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where r= x2− x1. If the material system is further statistically iso-
tropic, i.e., the joint probability distributions for the microstructure are
invariant under rigid-body rotation of the spatial coordinates, S2(1)

becomes a radial function, depending only on the scalar separation
distances,

= =x x rS S S r( , ) (| |) ( )1 22
(1)

2
(1)

2
(1) (6)

In the ensuing discussions, we will drop the superscript denoting the
phase index in S2(1) for simplicity. Without further elaboration, S2 al-
ways denotes the two-point correlation function for the phase of in-
terest. Based on its definition, we can easily obtain the limiting values
of S2, i.e.,
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Eq. (7) can also be derived from the probability interpretation of S2,
i.e., the probability of two random chosen points separate by distance r,
both falling into the phase of interest. In general, the n-point correlation

H. Li et al. Materials Characterization 140 (2018) 265–274

266



Download English Version:

https://daneshyari.com/en/article/7969273

Download Persian Version:

https://daneshyari.com/article/7969273

Daneshyari.com

https://daneshyari.com/en/article/7969273
https://daneshyari.com/article/7969273
https://daneshyari.com

