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Piecewise linear fitting, the technique proposed in this paper, performs data reduction on a large dynamic CT
dataset and it already takes a step in the direction of the data analysis and characterization that needs to be
performed afterwards. In addition, it drastically improves the signal-to-noise ratio. This is demonstrated on two
complementary samples: a Bentheimer sandstone and a pharmaceutical tablet.

This technique is developed for dynamic high-resolution CT scanning or 4D-uCT, a tool to study dynamic
processes in situ on the micro-scale. We propose to start from the low quality reconstruction and perform a

piecewise linear fit in the time direction for each voxel. This effectively uses the nearby temporal information,
regardless of the nature of the dynamic process, without introducing spatial correlation.

1. Introduction

In various scientific domains the ability to observe dynamic pro-
cesses inside samples as they take place yields invaluable information.
A dynamic process gives rise to an ongoing change in the structure of
the sample: for example fluid filling up pores [1], crack formation
under stress [2], the weathering of building stones [3] or lime-
stones [4], self-healing materials upon fracturing [5] or structure
changes due to temperature variations [6]. All these processes present
us with the same problem: we should be able to observe the inside of
the sample without disturbing the very process we want to study. As
such, in the vast majority of the cases visible light is not a suitable probe
as in most cases it has only a very limited penetration depth in the
sample, and cutting the sample open is clearly destructive.

The use of X-ray computed tomography (i.e. CT scans) is in many
cases a suitable solution. Observing the inside without cutting or de-
stroying the sample is precisely what the technique is intended for [7].
Next to medical applications, there are also numerous other applica-
tions that make use of CT scans, such as airport security [8], geological
research [9], historical artefacts [10], biology [11], and material sci-
ence [12]. A CT scan, performed on an object, results in a complete
virtual 3 dimensional representation of the object revealing both its
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internal and external features.

In brief, during a CT scan, a sample undergoes a rotation relative to
an X-ray source-detector system while a (large) number of radiographic
images (called projections) are taken at various rotation angles. The
relative rotation can be the sample rotating around its own axis with
stationary source and detector, or the source-detector system rotating
around the stationary sample. The rotation can be complemented with a
relative translation, e.g. in a helical trajectory [13]. These radiographic
images are reconstructed to a 3D volume consisting of an array of
voxels (3D pixels) using an appropriate reconstruction algorithm. The
algorithm can be filtered back projection (FDK for cone-beam set-
ups [14]), a technique that is less computationally intensive, or itera-
tive algorithms [15], which has the advantage of being more easily
extendible, for example by incorporating beam hardening correc-
tions [16]. This algorithm yields the local X-ray linear attenuation
coefficient for the material in each voxel. The attenuation coefficient
can be visualised by a grey value. Afterwards, the 3D volume can be
analysed, either by visual assessment or by complex automated ana-
lysis, or a mixture of both [17, 18].

The above describes the 3 dimensional case. In the case of dynamic
CT scans, we add the fourth dimension, time, to obtain a “4D-uCT
scan”. The p or micro- indicates a CT scanner with a resolution of at
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least 100 um, for certain very high-resolution systems even being as
good as 1 um or better. In a 3D + time scan, each scanned time step is
reconstructed separately, resulting in a time-series of 3D volumes. In
the case of a continuous 4D-uCT scan, where multiple rotations are
performed continuously while taking projections, the series of projec-
tions is divided into separate rotations, each corresponding to a certain
“time range”. Each of these is reconstructed in a 3D way, also resulting
in a time-series of 3D volumes. In a continuous scan, the defined time
ranges can overlap and the time distance between two sequential time
steps can be chosen freely. Each time range should preferably corre-
spond to a fully sampled dataset [19], in order to avoid limited angle
artefacts caused by a lack of angular information [20].

There is a lower limit on the time required per full rotation of the
scanner. This limit can be caused by the speed of the rotation stage or
by the combination of the required (and available) X-ray flux per
radiograph and the angular spacing, both contributing to the resolution
and signal to noise ratio of the scan. To optimize the temporal resolu-
tion, the time for one full rotation needs to be minimized under these
limitations. Indeed, during the full rotation time, the dynamic process
may already introduce changes in the sample. The reconstruction al-
gorithm assumes the scanned sample did not change during the scan or
in this case, during the used time range (i.e. it was a “static sample”).
This assumption may be violated due to the dynamical processes. The
result is the appearance of movement artefacts.

As such, to stay as close as possible to the assumption of a static
sample, the rotation should happen much faster than the time scale of
the dynamic process taking place in the sample. A typical 3D micro-CT
scan in the lab takes minutes to hours. Yet, we are often interested in
processes with temporal resolutions of some seconds to sub-seconds. A
4D micro-CT scan therefore rotates much faster than for a static scan,
currently a few seconds (12 and up) on our system at UGCT, the EMCT
micro-CT scanner [21].

However, decreasing the acquisition time introduces another pro-
blem: because the data acquired for one 3D reconstruction is taken
during the shortest possible time period, the projections contain less
detected photons, hence more image noise. This results in low quality
3D reconstructions and, since these are the building blocks of the 4D
result, a low quality 4D reconstruction. In addition, while there were
projections taken a short time apart, each containing information on a
specific time point, the time range of the 3D reconstructions will usually
consist of multiple projections, providing a worse temporal resolution.

When prior knowledge is available, techniques to exploit all avail-
able information become available. The prior knowledge of which re-
gions of the sample will be static and which will be dynamic gives the
option of using a method such as presented by Myers et al. [22] or
region based 4D tomographic reconstruction [23]. If the sample con-
sists of a few different compositions with known grey values, it is
possible to use discrete reconstruction techniques such as DART [24].
The latter technique requires less projections for one reconstruction,
thus improving the temporal resolution in a dynamic experiment. If the
physics of the dynamic process poses certain constraints to the re-
constructed grey values, this can be used in a Bayesian approach: the
MAP-EM framework (maximum a posteriori - expectation-maximisa-
tion) [25], where different physical effects or other a priori information
can be included. A more limiting case is the MAP algorithm presented
in [26].

The technique developed in this paper, piecewise linear fitting,
addresses the noise and dynamic changes in a 4D CT scan by using the
time as a connecting dimension. The starting point will be the low
quality, low temporal resolution 4D reconstruction described above.
The piecewise linear fitting approach will be applied after the volume
reconstruction to increase the signal-to-noise ratio and also already
provides information that can be readily used in the analysis of the 4D
dataset. In short, a piecewise linear function will be fitted to the time
evolution of the grey value of each voxel.

An analogue can be drawn with local regression [27] with a
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polynomial of the order of 1. In a technique called LOESS, a line is fitted
for each data point, including its direct neighbours. The result is a
smoothing of the data. This means noise will be reduced, just as with
piecewise linear fitting. On the other hand, the smoothing applies over
the discontinuities in the time dimension as well, which is an unwanted
effect. At the same time, the result would not be a simple set of para-
meters that can be used for further analysis.

Similar observations can be made about other 1D smoothing algo-
rithms or noise filters applied to the temporal dimension, such as
smoothing splines [28] or Savitzky-Golay filters [29]. These will have
similar noise repression behaviour, but lack the sharp breakpoints and
the final parameters that can be a starting point for analysis. The
breakpoints are sharp edges in the time dimension, such as when a
material moves into a voxel.

Fitting a function to the reconstructed data has been done in lit-
erature when there is more information available on the functional
behaviour of the time evolution. For example, in [30], a 3-piece pie-
cewise constant function is fitted to the time evolution of fluid flow
through rock, with the first and third piece being the same. This yields
excellent results, but it can only be used for samples that follow this
particular time evolution. In [31] and [32] the fitted function is a linear
combination of gamma variates. The application consists of dynamic
brain scans, which are performed precisely to determine information
that is contained in the parameters of this function, such as peak height
and mean transit time. Again, this particular function can only be used
for this particular application. It also requires some segmentation be-
forehand, since the curves are fitted to regions of interest (arteries)
where the contrast agent appears.

Dynamic PET or SPECT scan users have been fitting time de-
pendency models to their reconstructed data for some time already, as
can be read in [33-35]. Some replace the reconstructed voxel values by
the fitted values, as is the case in this paper, while others use some sort
of average between the two. They use a compartment model for the
intake and outflow of substances in (parts of) the human body. This is
therefore a combination of spatial and temporal fitting. In addition,
they combine the fitting and reconstruction steps. This means they go
directly from projections to the fitted parameters. Since the compart-
ment model is specific to the substance and human body, this is not
applicable to applications other than the one for which it is developed.
It is also harder to combine with other reconstruction improvement
techniques.

If the data corresponds to a specific, known function, in many cases
it is best to use these techniques (or a similar one with that known
function), as shown in literature. However, in absence of such prior
information, a piecewise linear function is a good choice. Its advantages
are 1) its simplicity, 2) the broad possible applications, 3) the fact that
no prior knowledge is needed and 4) that it can be used as a starting
point for further analysis of the sample.

Compared to other 4D noise reduction techniques, such as aniso-
tropic hybrid diffusion with continuous switch [36], piecewise linear
fitting is remarkably simpler, yet it can capture temporal dis-
continuities. Anisotropic hybrid diffusion with continuous switch is
actually a combination of two noise filters and has quite some para-
meters to tune, although the authors provide an estimated good value
for a number of them. Some samples need this more complex approach,
but for many, a simple one is adequate.

Section 2 explains how the developed method works, how it is im-
plemented (Section 2.2) and why specifically we chose a piecewise
linear function as opposed to any other function (Section 2.1). Then, we
provide a description of two samples that were used to test piecewise
linear fitting: a Bentheimer sandstone and a pharmaceutical tablet
(Section 2.3). Section 3 shows the results of this method on the two
chosen samples, demonstrating its ability to reduce noise while main-
taining resolution. The conclusions are presented in Section 4.
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