
Contents lists available at ScienceDirect

Materials Characterization

journal homepage: www.elsevier.com/locate/matchar

Characterizing dislocation configurations and their evolution during creep
of a new 12% Cr steel

Surya Deo Yadava,⁎, Moustafa El-Tahawyb,c, Szilvia Kalácskab, Mária Dománkovád,
David Canelo Yuberoe, Cecilia Polettie

aMechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, India
bDepartment of Materials Physics, Eötvös Loránd University, Pazmany Péter s. 1/A, H-1117 Budapest, Hungary
c Department of Physics, Faculty of Science, Tanta University, 31527 Tanta, Egypt
d Institute of Materials Science of MTF STU, Trnava, Slovakia
e Institute of Materials Science and Welding, Graz University of Technology, Graz, Austria

A R T I C L E I N F O

Keywords:
Creep
Dislocations
Subgrains
XRD
EBSD
TEM

A B S T R A C T

In this research, different types of dislocations are characterized and quantified in a newly developed 12% Cr
steel in as-received as well as in crept conditions. X-ray diffraction (XRD) patterns are analyzed using three
different models. The dislocation densities are determined employing the Convolution Multiple Whole Profile
(CMWP) fitting, the analysis of the asymptotic part of the X-ray line profile (Groma's method), and the Rietveld
refinement coupling Popa's and Williamson-Smallman approaches. CMWP method is used to measure the in-
ternal dislocation density inside the subgrains consisting of mobile and dipole dislocations, and the results show
good agreement with Transmission Electron Microscopy (TEM) measurements. Groma's method is used to
evaluate the total dislocation density, with results comparable to those obtained from the combination of
Electron Backscatter Diffraction (EBSD) and TEM. Rietveld method gives the internal dislocation density or
mobile dislocation density depending on the model chosen. The experimentally determined results such as creep
strain, dislocation densities and subgrain size are compared with theoretical predictions and they are found in
good agreement.

1. Introduction

The dependency on thermal power plants will still remain for many
years to fulfil the growing power demand in many part of the world [1].
Thermal power plants require large amount of materials with good high
temperature properties for constructing different components. 9–12%
Cr steels are used to fabricate many critical components of these power
plants [1–3]. These steels with martensitic/ferritic structure are ap-
propriate candidates for super heater tubes, boiler tubes, large forgings
and accelerator-driven system (ADS), due to their low cost and good
high temperature properties [1–10]. They combine creep strength and
oxidation resistance up to a certain extent [8]. The increment in steam
temperature and pressure are directly related to the increment of the
efficiency. This aspect is essential not only from the economic, but also
from the ecological point of view [1,11–13]. The power plant compo-
nents should have desired properties to resist this increased tempera-
ture and pressure for long term without breakage.

In tempered condition, also frequently designated as as-received
condition, the microstructure of the martensitic/ferritc steels comprises

of different interfaces such as: prior austenitic grain boundaries
(PAGBs), block boundaries, packet boundaries, lath boundaries and
subgrain boundaries. These boundaries are decorated with M23C6 car-
bides while MX type carbonitrides are distributed throughout the ma-
trix [4,7,10,14–16]. The substructure is considered as formed by dif-
ferent dislocations types. According to the configurations and stress
fields of the dislocations, they are classified into mobile, dipole and
boundary dislocations [17–19]. The mobile and dipole dislocations
residing inside the subgrain interior are also referred as statistically
stored dislocations (SSDs) and boundary dislocations as geometrically
necessary dislocations (GNDs).

For the further development of new alloys those are resistant to
creep at severe conditions, it is necessary to understand both, the re-
sponse of the material under high temperatures loading and the gov-
erning creep mechanisms. The development process can be more effi-
cient if it is coupled with physical based modelling [20]. Physical
models of metallurgical processes such as creep deformation, rolling,
forging and extrusion, require experimental data based on micro-
structural features. These features can be different types of dislocation
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densities such as: mobile (ρm), dipole (ρdip) and boundary (ρb), and
subgrain size (Rsub). In this way, for example, creep strain rate is con-
sidered as a function of different variables, as discussed in [19]:

ε ρ ρ ρ σ̇ ( , , , , , , , )f R T r Nm dip b sub m v= (1)

where σ is the applied stress, T is the temperature, rm is the mean radius
of precipitates and Nv the number density of precipitates. Therefore, the
numerical values of the internal variables are needed in order to de-
velop, validate and calibrate the models [17–27].

In this regard, the precise characterization and quantification of
different dislocations inside the substructure is necessary. In the last ten
years significant amount of research has been done and the results of
the measurement of dislocation densities were published applying dif-
ferent techniques, such as XRD, EBSD and TEM [17,28–36]. On the
other hand, comments on the particular dislocation configuration
measured in this type of steels are very rare [17,28]. Thus, it is ne-
cessary to find out the applicability of XRD models in combination with
TEM and EBSD for the measurement of specific dislocation density.

In present research work we discuss the three different XRD models
to evaluate the dislocation densities. The obtained dislocation densities
from XRD models were compared with those obtained using com-
plementary TEM and EBSD methods. Finally, experimental results such
as dislocation densities, subgrain size and creep strain are compared
with theoretical predictions based on a hybrid creep model [19].

2. Theoretical Background of X-ray Line Profile Analysis

The measured X-ray diffraction pattern P(2θ) can be represented as
the Fourier series in reciprocal space, as a function of the angular factor
K, the number of unit cells N in the sample and a structure factor F [37]:
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where h= 1 / d, d being the distance between the lattice planes, and n
is harmonic number. The real part of the Fourier co-efficient An is the
result of two effects: the lattice strain An

S and the size effect An
D:
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The X-ray diffraction patterns contain the enormous amount of in-
formation related to the microstructure of a material at a given con-
dition. Different models have been used to extract the microstructural
information such as lattice strain, crystallite size and dislocation density
analyzing the X-ray line profile. As our focus is the measurement of
different dislocation densities, the most commonly used methods by
metallurgical scientists are Groma's method [38], CMWP fitting [39]
and Williamson-Smallman approach [40–44]. The basic concepts be-
hind these three methods are discussed briefly in the following sub-
chapter.

2.1. Groma's Method

Groma et al. [38] have shown that the intensity distribution I(q) of
the tail of XRD pattern follows the function:
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The kthorder moment of the intensity distribution I(q) is expressed
as:
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The moment can also be evaluated from the Fourier transformation
of the intensity distribution A(n) as:
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From Eq. (5) restricted moment or kthorder variance, vk(q′) can be
evaluated applying the finite integration limits as:
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From Eqs. (4)–(7) the second order restricted moment v2(q) and
fourth order restricted moment v4(q) are derived as:
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Eqs. (8) and (9) can be used to evaluate the total dislocation density
inside the material, by determining the parameter ᴧ that defines the
contrast effect of dislocations. The model was applied for the evaluation
of total dislocation density in many different alloys [45–54].

2.2. Convolution Multiple Whole Profile Fitting (CMWP)

According to this method, it is assumed that the broadening of a
given diffraction peak is caused by the strain fields of the dislocations.
The full width at half maximum (FWHM) of diffraction patterns is ex-
pressed as [39]:
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where K= 2sinθB / λ and ΔK= 2cosθB(Δθ) / λ. Being D a size para-
meter, ρint is the average internal dislocation density, b is the Burger's
vector, C is the contrast factor, M a constant relying on outer cut-off
radius of dislocations, θB is the Bragg angle, O represents the higher
order terms in K C4 2 and λ is the wavelength of X-ray. According to the
Warren-Averbach approach, the Fourier transformation of the XRD
patterns follows Eq. (11) [39]:
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where AL
S is the size Fourier coefficient, L is the Fourier parameter, and

g the diffraction vector. In terms of Wilkens function f(η), the mean
square lattice strain causing the peak broadening is given as:
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where C is the average dislocation contrast factor and can be expressed
as:
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The internal dislocation density ρint was evaluated from Eq. (12) in
different alloys [55–62].

2.3. Williamson-Smallman (W-S) Approach

According to this model, the mobile dislocation density is expressed
by Eq. (14) [42,44]:
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where k is a constant that depends on the lattice, eRMS is the root-mean-
square microstrain and F accounts for the interaction of dislocations.
Assuming that materials have block shape crystallites with effective size
Deff, the density of dislocations contributing to the crystallites bound-
aries is expressed as:
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where, n accounts for the number of dislocations on each block face.
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