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Many important properties of particulate materials are heavily influenced by the size and shape of the constitu-
ent particles. Thus, in order to control and improve product quality, it is important to develop a good understand-
ing of the shape and size of the particles thatmakeup a given particulatematerial. In this paper, we showhow the
spherical harmonics expansion can be used to approximate particles obtained from tomographic 3D images. This
yields an analytic representation of the particles which can be used to calculate structural characteristics. We
present an estimation method for the optimal length of expansion depending on individual particle shapes,
based on statistical hypothesis testing. A suitable choice of this parameter leads to a smooth approximation
that preserves the main shape features of the original particle. To show the wide applicability of this procedure,
we use it to approximate particles obtained from two different tomographic 3D datasets of particulate materials.
The first one describes an anode material from lithium-ion cells that consists of sphere-like particles with differ-
ent sizes. The second dataset describes a powder of highly non-spherical titanium dioxide particles.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Granular materials are used in many different industrial applica-
tions. For instance, they are used as ingredients in pharmaceutical
materials and in the production of semiconductors and energymaterials
such as lithium-ion cells, solar cells and fuel cells [1–3]. Both the trans-
port and industrial processing of agglomerates are greatly influenced by
the shape and size of the agglomerate components [4]. For example, the
flow, handling and rheology of granular materials are directly
influenced by the shape and size of the constituent particles [1,5–7].
The performance of particulate materials also depends directly on
their microstructure. For example, the performance of lithium-ion
anodes depends strongly on the morphology of graphite particles and
their spatial arrangement [8].

Tomographic three dimensional (3D) images are ideal sources for
investigation of particle characteristics. Many different imaging
techniques exist, including electron tomography [9,10] and focused
ion-beam (FIB) tomography [11,12], which have resolutions on the
nm-scale, synchrotron tomography [13] and X-ray microtomography

(μ-CT) [14,15], which have resolutions on the μm-scale, and neutron-
tomography [16] which can be used for investigations of larger objects.

Since particles in experimental 3D datasets are represented by sets
of voxels, their analysis is a non-trivial task. In addition, particles can
have rough surfaces and there are often artifacts present in the data,
e.g., caused by the measurements or preliminary image processing
steps likefiltering and binarization. Thus, a different particle representa-
tion is needed to reproduce the properties of particle shapes, which is
suitable for many materials. In some cases, this can done by using
simple geometric objects like spheres, ellipsoids or unions of spheres.
However, these simple objects cannot reproduce the shape of more
complex particles, because important characteristics like volume,
surface area or surface roughness are not preserved.

In this paper, we use the spherical harmonics expansion [17–19] to
calculate an alternative representation of particles based on voxelized
objects. Spherical harmonics have proven to be a valuable tool for the
representation of particles [20,21]. The exact shape of a particle is
represented as a combination of objects with growing roughness, the
spherical harmonic functions. The spherical harmonic functions in the
expansion are ordered in such away that the roughness of the functions
increases with the length of expansion. This kind of hierarchical
representation is essentially influenced by a cutoff parameter to achieve
a smooth approximation. The cutoff parameter is crucial as it controls
the balance between the quality and the smoothness of the approxima-
tion.We present amethod for optimally choosing this cutoff parameter,
L, the length of expansion, based on statistical hypothesis testing.
We show by comparing the mean square error that in this way an
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approximation is obtained which is in good accordance with the
voxelized representation for complex shaped objects. Furthermore, we
use an analytic description of this representation to calculate different
particle characteristics and compare them to those obtained directly
from the voxelized objects. A basic characteristic is the radius of an
equivalent sphere, where this sphere can be defined to have equal vol-
ume, equal surface area or the same minimum or maximum particle
axes, depending on the given application [22]. Other characteristics
are sphericity [23] and characteristics that are based on the convex
hull [24] and Gaussian curvature [25–27]. We note that the representa-
tion of particle shapes in spherical harmonics enables the definition and
calculation of more refined characteristics as stated in [28]. Some of
these characteristics can be linked with effective physical properties of
the materials like diffusive behavior or interfacial reaction rates [8,29].

In order to demonstrate the potential and generality of this method
we apply it to two different particle systems. Both samples are obtained
using 3D imaging techniques with subsequent segmentation. The first
particle system is extracted from the anode of a lithium-ion cell and
consists of LiC6 particles. The second sample describes a powder of
highly non-spherical TiO2 particles.

The rest of this paper is organized as follows. In Section 2, the class of
spherical harmonic functions is introduced.We discuss the definition of
the boundary for an object which is defined on a voxel grid and present
an algorithm for its fast evaluation. For the purpose of implementation,
all necessary algorithms and numerical details for the fast and efficient
calculation of the coefficients in the spherical harmonics expansion
are briefly recalled. Furthermore, we propose a method to estimate
the parameter L, which determines the approximation quality and the
smoothing effect in the expansion. In Section 3, this technique is applied
to experimental data. After a short description of the materials, the ap-
proximation of particles from both samples by spherical harmonics is
described. A comparison of the particle systems from the two different
materials is performed using the spherical harmonics expansion. The
goodness of approximation is discussed and various structural charac-
teristics like particle sizes, surface areas and surface roughness are cal-
culated. Finally, an outlook to further possibilities regarding the
representation of particle systems by means of spherical harmonics
concludes the paper.

2. Representation of particles by spherical harmonics

In this section we introduce themathematical background of spher-
ical harmonics and describe the techniques required for application to
particles extracted from 3D images. Throughout this section, a particle
is taken to be a set of connected voxels in a binary image, where each
voxel can only adopt one out of two values which indicates whether
the voxel belongs to the foreground or background, respectively. The
two possible states are denoted by true and false. The spherical
harmonics are a set of functions defined on the unit sphere which
form a basis for a large class of functions. In fact, each square integrable
function on the unit sphere can be represented as a series of spherical
harmonics. In the situation where the functions define the boundary
of the particles, this integrability condition is always naturally fulfilled.
An important requirement for the particles is that they are star shaped
(or star convex) with respect to a centroid [30], in our case to the
barycenter. If this is true, it is possible to define a radius function on
the unit sphere to fulfill the conditions for the expansion in spherical
harmonic functions. The radius function maps each angle (θ, ϕ) on the
unit sphere to the distance from the centroid to the boundary of the
particle in that direction. Star shaped (or star convex) with respect to
a point means that the connection from this point to each point of the
particle lies completely inside the particle. This especially means that
there are no holes or, e.g., curved intrusions into the particles. Further-
more, it onlymakes sense to calculate a smooth approximation of parti-
cles if it is reasonable to assume that the observed objects are smooth.

2.1. Definition and calculation of the boundary

During the preprocessing of data, the 3D images are binarized and
segmented using a morphological segmentation method. In our case, a
watershed transform [31–34] is used. This means that the binary
image B is divided into distinct regions B1, …, Bn with ∪ i = 1

n Bi = B
and Bi ∩ Bj = ∅ for i ≠ j. The set of foreground voxels in a region corre-
sponds to exactly one particle. In the following we describe the proce-
dure that is applied to each particle.

The first step is to determine the distance from the barycenter of the
particle to the boundary in each direction in order to compute the radius
function. However, it is not clear how the boundary should be defined to
model the original object as accurately as possible. There are several
reasons for this. The discretization of the real object, based on grayscale
intensities in an image, to Boolean values can be done using some kind
of threshold to decide whether a voxel is classified as foreground or
background. Thus, it is clear that the boundary cannot be defined with-
out some assumptions about the preliminary step of discretization.
Fig. 1 shows a 2D example of the consequences of different thresholds
for the voxelized object. In the first case, shown in Fig. 1(a), every
voxel that covers a part of the original object, which means that it has
an intensity value larger than zero, is put to foreground which leads to
an overestimation of the size of the object. In the other case, considered
in Fig. 1(b), only voxels that are completely inside the object, which
means that their intensity has the maximal value, are marked as fore-
ground which leads to an underestimation of the size of the object.

Therefore, it is important to have information on the choice of the
threshold and other preliminary steps for the binarization. In the ex-
treme cases discussed above one can perform a morphological erosion
or dilation [35] as a correction.

After a suitable preprocessing of the particle, we need to determine
the exact distance from the centroid to the boundary for each direction
on the unit sphere. As stated above, we assume that the particle is star
shaped to ensure that the algorithm proposed below yields valid results
in all cases. For a given angle, (θ, ϕ), we use nested intervals for an effi-
cient evaluation of the particle boundary of the voxelized particles. We
use the diagonal size, d, of the bounding box calculated for the original
object as an upper bound for the radius in each direction. We then con-
sider the following procedure:

(1) Construct a unit vector e in direction (θ, ϕ).
(2) Put the initial interval [a, b] = [0, d].
(3) If (a + b)/2 ⋅ e belongs to the particle, then put a = (a + b)/2,

otherwise set b = (a + b)/2.
(4) Repeat step 3 if b− a N τ, where τ is some required (maximum)

tolerance.
(5) The result is r(θ, φ) = (a + b)/2.

A schematic illustration of this procedure is shown in Fig. 2. The ad-
vantage of nested intervals is that the runtime of the algorithm is, in
practice, nearly independent of the particle size because the computa-
tional effort is logarithmic in the diameter of the particle's bounding
box for a fixed tolerance. The boundary in direction (θ, ϕ) can then be
represented in Cartesian coordinates relative to the centroid by

x ¼ r θ;ϕð Þ sin θ cosϕ;
y ¼ r θ;ϕð Þ sin θ sin ϕ;
z ¼ r θ;ϕð Þ cos θ:

ð2:1Þ

2.2. Expansion in spherical harmonics

The set of spherical harmonic functions {Ylm : [0, π] × [0, 2π)→ [0, ∞):
l,m ≥ 0} is a basis for the family of square integrable functions defined on
the unit sphere. This means that the radius function for a given particle
can be expanded in terms of spherical harmonics, if the particle is star
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