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The search process associated with the quantitative theory–experiment comparison in Low Energy Electron
Diffraction surface structural analysis can be very time consuming, especially in the case of complex materials
with many atoms in the unit cell. Global search algorithms need to be employed to locate the global minimum
of the reliability factor in the multi-dimensional structural parameter space. In this study we investigate the
use of theDifferential Evolution algorithm in Low Energy ElectronDiffraction structural analysis. Despite the sim-
plicity of its mechanism the Differential Evolution algorithm presents an impressive performance when applied
to ultra-thin films of BaTiO3(001) in a theory–theory comparison. A scaling relation ofN(1.47 ± 0.08) was obtained,
where N is the total number of parameters to be optimized.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Low Energy Electron Diffraction (LEED) technique is the most
used experimental approach for surface structure determination. Im-
pinging low energy electrons (20 to 500 eV) interact strongly with the
atoms in the top surface layers, drastically reducing their effective pene-
trationdepth and consequentlymaking LEEDvery surface sensitive. How-
ever this strong interaction (multiple scattering) excludes the possibility
of a simple direct inversion of experimental data like in a Patterson func-
tion formalism [1]. Consequently, LEED structure determination needs to
be performed in an indirect way.

LEED surface structural determination is performed by a quantitative
comparison of experimentally collected curves of the intensity from
diffracted spots as a function of incident electron energy [I(V)] with theo-
retically calculated ones as function of structure. This comparison is made
quantitative by the use of a so-called reliability factor (R-factor). The lower
the final R-factor achieved, the more reliable are the results of the struc-
tural determination. In summary, the surface structure determination by
LEED turns into a search problem in which one needs to explore a
multi-dimensional parameter space of surface structural parameters and
find the global minimum of the R-factor among all existing local minima.

This search process is usually performed by applying local search algo-
rithms (Powell-Directed Search, Simplex, Levenberg-Marquardt) [2],
which are able to explore only a small fraction of the parameter space

and usually locate only a minimum (most likely local) close to the search
starting point. As a consequence the employed local searchmethod needs
to be launched from different initial points in the parameter space in
order to be able to locate the global minimum among all other local min-
ima, turning the searchprocess into a very time consumingprocess. An al-
ternative is the use of global search algorithms, like genetic algorithms [3]
and simulated annealing method [4], that are able to efficiently explore
the multi-dimensional parameter space and locate the global minimum
of the R-factor without getting trapped in local minima.

In order to be suitable to the LEED search problem a global search al-
gorithm needs to possess two main features. 1) It needs to present a
high probability of locating the global minimum among all existing
local minima in the multi-dimensional parameters. 2) The method
needs to present a favorable scaling behavior with the number of total
structural parameters being optimized. This scaling will evaluate the
computational effort to locate the global minimum as a function of the
number of optimized structural parameters.

The typical large size and complexity of the structure of new
materials like transition metal oxides makes the LEED structural search
process even more difficult. The surface unit cell of these materials will
be large,withmanydistinct atoms. For example, a reconstructed surface
for a layered transitionmetal compoundmay have over 20 atoms in the
unit cell, with around 60 structural parameters (depending on symme-
try) to be determined by the experiment–theory comparison. After one
finds a physically feasible structuralmodel for the surface (hopefully the
actual structure), based on all available information based on experi-
mental and/or theoretical results, a large number of structural parame-
ters still need to be optimized in order to obtain the final structure. The
use of global search algorithms for the surface analysis of suchmaterials

Materials Characterization 100 (2015) 143–151

⁎ Corresponding author.
E-mail address: wplummer@phys.lsu.edu (E.W. Plummer).

1 Present address: Departamento de Física, ICEx-UFMG, CP 702, BeloHorizonte,MG CEP
30123-970, Brazil.

http://dx.doi.org/10.1016/j.matchar.2014.12.020
1044-5803/© 2014 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Materials Characterization

j ourna l homepage: www.e lsev ie r .com/ locate /matchar

http://crossmark.crossref.org/dialog/?doi=10.1016/j.matchar.2014.12.020&domain=pdf
http://dx.doi.org/10.1016/j.matchar.2014.12.020
mailto:wplummer@phys.lsu.edu
http://dx.doi.org/10.1016/j.matchar.2014.12.020
http://www.sciencedirect.com/science/journal/10445803
www.elsevier.com/locate/matchar


turns out even more important than for less complex metallic or some
semiconductor systems for instance. A review of all the global search
methods applied to the LEED structural determination can be found in
the recently published article by Soares and collaborators [5].

Several distinct approaches have been proposed for the use of global
search algorithms in LEED structural analysis.

• The simulated annealing (SA) algorithm was investigated by Rous [6]
in a pioneering attempt to apply a global search method to the LEED
search problem. A theory–theory comparison for the Ir(110)(2 × 1)
systemwas used to evaluate the scaling relation, yielding an unfavor-
able scaling given by N6.0, where N stands for the total number of op-
timized structural parameters.

• Motivated by this first SA approach for the LEED global search prob-
lem, Nascimento and co-workers [7,8] investigated the fast simulated
annealing (FSA) approach [9]. A Cauchy–Lorentz random step distri-
bution function is employed in the FSA algorithm contrasting with
the Gaussian or uniform distributions typically used in the SA ap-
proach. By employing the Cauchy–Lorentz distribution random large
steps will be taken during the search process. A very favorable scaling
given by N1.0 was obtained in a theory–theory comparison for the
CdTe(110) system, with a drawback of a decreasing convergence
probability as N increases. Correa et al. worked on implementing
and testing the generalized simulated annealing (GSA) approach for
the LEED search problem [10]. The LEED GSA approach was based
on the non-extensive statistical mechanics by Tsallis [11–13]. Within
this approach several distinct distribution functions defined by the
qV parameter have been tested. This parameter basically defines the
distribution function for the size of random steps taken during the
search process. The obtained results indicated that the FSA approach
(special case for qV=2.0, defining a Cauchy–Lorentz distribution)
had the optimal performance, again indicating a linear scaling N1.0 in
agreementwith the previous results obtained byNascimento et al. [8].

• Simulated annealing was recently incorporated in the computational
code implementing the new frozen LEED (FL) perturbative approach
for tensor calculation proposed by Yu and Tong [14].

• A simulated annealing algorithm is also one of the global search
methods implemented in a LEED code completely written in the C
language (CLEED) by Held et al. [15].

• A random sampling algorithm was proposed by Kottcke and Heinz
[16]. This method allows only for downhill moves during the search
process, in contrast with the simulated annealing approach and repre-
sents a compromise between global and local search. An effective N2.5

scaling was obtained for the Ir(110)(2x1) system.
• The combinatorial simultaneous optimization (SO) method was pro-
posed by Blanco-Rey and de Andres [17]. Results obtained with a the-
ory–theory comparison for the Ir(110)(2x1) missing-row surface
indicates a very high convergence probability but a not effective scal-
ing of N4.1.

• Döll and Van Hove [18] investigated the application of the genetic al-
gorithm [3] to the LEED search problem. The genetic algorithmmimics
themechanism of natural evolution. No scaling relation was explored
in this work.

• A more recent work by Alvarenga and co-workers [19] has indicated
that the genetic algorithm can be a very effective tool for the search
problem if combined with local search methods since under this
combination a very favorable scaling of N1.5 was obtained for the
Ni(111)(
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• Another interesting approach to the LEED search problem, based on
pattern search methodology (generalized pattern search), was re-
cently proposed by Zhao et al. [20]. Obtained results indicated a better
performance than the genetic algorithm, but no scaling was reported.

In spite of promising results obtainedwith the previouslymentioned
global search methods, it is important to explore new possible

algorithms to tackle the difficult LEED search problem. In this work we
investigate the use of the Differential Evolution algorithm (DE) [21,22]
for the LEED search problem. As an initial test the Differential Evolution
method has been applied to the optimization of the surface structure of
the BaTiO3(001) ultra-thin films [23] in a theory–theory comparison. A
scaling relation has been obtained and showed a promising perfor-
mance as characterized by a N(1.47 ± 0.08) scaling, which rivals perfor-
mance results from previously investigated global search algorithms
(see Table 1).

2. Differential evolution algorithm

Differential Evolution (DE) algorithm is a newheuristic approach for
minimization/optimization problems that belongs in the evolutionary
group of algorithms [21,22,24,25]. Its main feature consists on the fact
that the vectors in the N-dimensional parameter space are mutated by
adding weighted random vector differentials. This feature contrasts
with regular evolutionary algorithms that use a probability function
(Gaussian, Cauchy, fuzzy) to generate perturbing changes in the
vectors during the mutation step. DE will use the present population
to generate the vectors increments in magnitude and orientation.

The differences between DE and GA algorithmswill be better under-
stood by comparing our description of DE to be following presented
with references on genetic algorithms [3,5]. However we will present
a brief discussion about Genetic Algorithms in order to allow a better
understanding of the differences between this class of algorithms and
the Differential Evolution method.

Genetic algorithms keep closely to the metaphor of genetic repro-
duction. Even their language ismostly the same of genetic reproduction.
In both cases there is the use of terms like chromosomes, genes, (genes
are distinct alphabets) and crossover (crossover is fairly close to a low-
level understanding of genetic reproduction). An initial population of
individuals is randomly created as a starting generation. The informa-
tion about the parameters to be optimized is stored in chromosomes
(genes) that are coded as bit strings or float numbers depending on
the algorithm implementation. An evaluation of fitness is calculated
for every individual of this first population. The fitness parameter is de-
fined as a constant real number minus the cost function to be mini-
mized, thus turning the minimization problem of the cost function
into a maximization process of the fitness parameter. After this initial
population is created and characterized a loop is performed over gener-
ations until a certain stop (convergence) criterium is fulfilled: i) Pairs of
individuals are selected as parents for the next generation based on
their fitness. ii) Two offspring are created during a crossover process
for every pair previously selected. iii) Mutation is applied to every
new individual and fitness is calculated. iv) All the generated offspring
will consist on the next population and the parents will die. v) A mech-
anism called elitismmay be applied depending on the algorithm imple-
mentation. Elitism process takes part of the top best individuals, based
on fitness, to the next generation.

Although DE algorithm apparently presents the same basic opera-
tional steps (mutation, crossover and selection) present in genetic algo-
rithm implementations, the order and way these steps are performed

Table 1
Summary of results obtained with the application of global search methods to the LEED
problem. Applied search method, explored surface system (theory–theory comparison)
and scaling relation are presented. Only results that included a scaling behavior have been
included in this table.

Method System Scaling

SA(Rous) Ir(110)(2 × 1) N6.0

FSA/GSA CdTe(110) N1.0

Random sampling Ir(110)(2 × 1) N2.5

SO Ir(110)(2 × 1) N4.1

GA + local optimization Ni(111)(
ffiffiffi
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)–R300Sn N1.5

DE Ultra-thin films of BaTiO3(001) N(1.47 ± 0.08)
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