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a b s t r a c t

In this paper, a power series and Fourier series approach is used to solve the governing

equations of motion in an elastic axisymmetric vessel with the assumption that the fluid

is incompressible and Newtonian in a laminar flow. We obtain solutions for the wave

speed and attenuation coefficient, analytically where possible, and show how these differ

under a number of different conditions. Viscosity is found to reduce the wave speed from

that predicted by linear wave theory and the nonlinear terms to increase the wave speed

in comparison to the linear solution. For vessels with a wall stiffness in the arterial

range, the reduction in the wave speed due to the viscous terms is approximately 10% and

the increase due to the nonlinear terms is approximately 5%. This difference between the

linear and nonlinear wave speeds was found to be largely constant irrespective of the

number of terms considered in the power series for the velocity profile. The linear wave

speed was found to vary weakly with stiffness, whilst the nonlinear wave speed was

found to vary significantly with the stiffness, especially at low values of stiffness. The 10%

variation in the wave speed due to the viscous terms was found to be constant with wall

stiffness whilst the 5% variation due to the nonlinear terms was found to vary with wall

stiffness. The importance of the number of terms considered in the power series is

discussed showing that only a relatively small number is required in the viscous case to

obtain accurate results.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models play a valuable role in predicting flow fields and changes in vessel dimensions, as well as the
influences of specific anatomical or physiological effects on the flow behaviour. This information can prove useful in
understanding the processes occurring in blood vessels particularly in vascular disease conditions. Wall shear stress has been
related with atherosclerosis (Caro et al., 1969, 1971) and aneurysms (Vande Geest et al., 2006). However, the underlying
cause of why both vascular diseases initiate is still unclear and a matter of considerable controversy. Furthermore, there is no
precise method to measure the shear stress at the vessel walls in vivo. There is thus much interest in the use of numerical
models to understand better the flow and transport processes occurring in blood vessels.

A wide range of mathematical models that solve for the motion of blood is available. These can be one-dimensional,
two-dimensional or three-dimensional. One- and two-dimensional models consider a geometrically simplified vessel, such
as a straight vessel, which can give a good theoretical understanding of the underlying mechanics of any physiological effects
of interest. Three-dimensional models, however, consider specific vessels which give a more precise quantitative analysis of
the fluid dynamics in that individual vessel.
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Womersley proposed a two-dimensional algorithm: a linear algorithm which was initially applied to a rigid vessel
(Womersley, 1955a) assuming blood to be Newtonian, later also being applied to non-rigid vessels (Womersley, 1955b). The
effects of the viscous forces on wave propagation was discussed in the latter case. It is concluded that the Womersley number,
a, a dimensionless expression of the pulsatile flow frequency in relation to viscous effects, is the only parameter that governs
the behaviour of oscillatory flow and that the wave speed increases with the Womersley number tending to an asymptotic
value obtained by Lamb (1898). The model predicts the phase lag between the pressure gradient and the flow as well as flow
reversal initiating at the walls (Hale et al., 1955). A second two-dimensional algorithm was proposed by Branson (1945). A
Fourier series in time with coefficients that are functions of the radial co-ordinate was presented to solve the linear form of the
equations of motion of a viscous fluid in an elastic tube. However, the equation for the conservation of mass which is
presented is only valid for an inviscid fluid.

For a two-dimensional algorithm, wave propagation in non-rigid vessels has often been analysed by linearising the
momentum equation. Morgan and Kiely (1954) analysed the effects of the viscous terms on wave propagation in an elastic
vessel and solved for the limiting cases when ab1 and a51. A similar approach to solve for wave propagation was
considered by Atabek and Lew (1966) and Atabek (1968) for an elastic vessel and by Cox (1968) for a viscoelastic vessel.

A nonlinear two-dimensional algorithm was subsequently developed by Ling and Atabek (1972) which was applied to elastic
vessels. The variation of radius with pressure was measured by in vitro experiment. The numerical results showed local regions of
partial or complete flow reversal initiating at the walls. It was found that the linearised equations artificially increased the magnitude
of the viscous forces with higher flow rates which lead to inaccurate velocity profiles compared to experimental results.

Other similar approaches where the partial differential equations of the governing equations of motion are converted to
ordinary differential equations include Miekisz (1963), Rao (1983), Rashevsky (1945), Rubinow and Keller (1972). Miekisz (1963)
attempted to solve the linear one-dimensional equation of motion using a Fourier series in time in an elastic tube. Rao (1983)
solved for a linear two-dimensional algorithm for an elastic vessel. Steady periodic oscillations were assumed to solve for the
excess pressure and thus the velocity. Rashevsky (1945) and Rubinow and Keller (1972) both obtained a solution for the variation
of an elastic vessel for steady flow of a viscous fluid assuming Poiseuille flow. The latter applies this to a network of tubes.

These previous approaches have made several assumptions most notably the linearising of the equations in unsteady flow.
For this purpose we propose here a novel technique which uses a nonlinear two-dimensional, axial and radial, algorithm to
simulate fluid flow in a single axisymmetric vessel with no curvature. A power series over the radius and a Fourier series over
time is used to represent the velocity. This is substituted into the governing equations of motion which converts the partial
differential equations into a series of coupled ordinary differential equations, leading to a significant reduction in
computational cost. This approach incorporates the interaction between the different power and harmonic terms, which
allows for a direct quantification of the effects of the nonlinear terms. We are thus able to quantify the effects of both
nonlinearities and viscous forces on wave propagation directly.

2. Theory

We consider the motion of a Newtonian incompressible fluid in an axisymmetric vessel with linear elasticity. The Navier–
Stokes equation, the continuity equation and a linear elasticity equation are solved. A trial solution using a power series and a
Fourier series is used to solve the equations for oscillatory flow with time period T.

2.1. Governing equations of motion

The governing equations of motion for an incompressible fluid can be obtained from the Navier–Stokes equations. In the
case of an axisymmetric vessel with no curvature, using the following nondimensional variables:
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where x and r are the respective axial and radial co-ordinates, t is the time, R is the radius, Ux and Ur are the respective axial and
radial velocities, U and V are the respective characteristic axial and radial velocities, RE is the radius at the equilibrium state
and L is a characteristic length of the vessel defined by L=URE/V, the continuity equation can be expressed as
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Considering a linear pressure radius relationship (Smith et al., 2002):

p�pE ¼ G0ðY�1Þ, ð2Þ

where p is the pressure of the vessel, pE is the pressure of the vessel at the equilibrium state and G0 is the transmural
pressure required to close the vessel or double its radius, and assuming that e¼ RE=L51, the momentum equation can be
expressed as
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