Author's Accepted Manuscript

Role of one direction strong texture in stretch formability for ZK60 magnesium alloy sheet

Wenke Wang, Limin Ma, Shaochun Chai, Wencong Zhang, Wenzhen Chen, Yangju Feng, Guorong Cui

www.elsevier.com/locate/msea

PII: S0921-5093(18)30780-9

DOI: https://doi.org/10.1016/j.msea.2018.05.113

Reference: MSA36551

To appear in: Materials Science & Engineering A

Received date: 23 April 2018 Revised date: 28 May 2018 Accepted date: 31 May 2018

Cite this article as: Wenke Wang, Limin Ma, Shaochun Chai, Wencong Zhang, Wenzhen Chen, Yangju Feng and Guorong Cui, Role of one direction strong texture in stretch formability for ZK60 magnesium alloy sheet, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.05.113

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Role of one direction strong texture in stretch formability for ZK60 magnesium alloy

sheet

Wenke Wang^a, Limin Ma^a, Shaochun Chai^b, Wencong Zhang^a, Wenzhen Chen^a, Yangju Feng^a, Guorong

Cuia

^aSchool of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, PR China

^bZibo Deyuan Metal Materials Co., Ltd, Zibo 255000, PR China

*Corresponding author. Postal Address: Room A301, School of Materials Science and Engineering, Harbin

Institute of Technology, Weihai 264209, PR China. Tel.: +86 631 5672167; fax: +86 631 5672167. E-mail

address: nclwens@hit.edu.cn (Wenzhen Chen)

Abstract:

Three ZK60 resulting sheets with same grain size but various texture states were successfully

fabricated by a combination process of hot rolling, cold rolling and annealing treatment. Subsequently,

standard Erichsen tests were performed on these resulting sheets which possessed orthotropic basal texture

exhibiting an egg-shaped asymmetric distribution of basal poles from the normal direction. Combining

with the analysis of strain hardening ability obtained from uniaxial tension test, it could be concluded that

the magnesium alloy sheets with orthotropic basal texture presented anisotropy in strain hardening ability,

and their stretch formability was dependent on the strong texture in one direction of magnesium alloy

sheets. That was to say, texture weakened only in single direction could not improve the stretch formability.

This conclusion was supported more by the direction of crack propagation which was parallel to the weak

texture direction of magnesium alloy sheet.

Keywords: ZK60; Stretch formability; Texture; Crack

1 Introduction

Due to the high specific strength and low density, magnesium alloys are the lightest structural metal,

and their application is expanding, especially in aerospace and automotive industries [1]. However, their

inherent hexagonal close packed (HCP) structures usually produce strong basal texture because their

critical resolved shear stress (CRSS) of basal slip is much lower than non-basal slip. This leads to their

poor sheet formability under the room temperature, which greatly limits their widespread commercial

usability [2, 3].

1/16

Download English Version:

https://daneshyari.com/en/article/7971762

Download Persian Version:

https://daneshyari.com/article/7971762

<u>Daneshyari.com</u>