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a b s t r a c t

Statistically equivalent representative volume elements or SERVEs are representations of
the microstructure that are used for micromechanical simulations to generate homo-
genized material constitutive responses and properties (Swaminathan et al., 2006a;
Ghosh, 2011). Typically, a SERVE is generated from the parent microstructure as a sta-
tistically equivalent region, whose size is determined from the requirements of con-
vergence of macroscopic properties. Standard boundary conditions, such as affine trans-
formation-based displacement boundary conditions (ATDBCs), uniform traction boundary
conditions (UTBCs) or periodic boundary conditions (PBCs) are conventionally applied on
the SERVE boundary for micromechanical simulations. However, when the microstructure
is characterized by arbitrary, nonuniform distributions of heterogeneities, these simple
boundary conditions do not represent the effect of regions exterior to the SERVE. Im-
proper boundary conditions can result in significantly larger than optimal SERVE domains,
needed for converged properties. In an attempt to overcome the limitations of the con-
ventional boundary conditions on the SERVE, this paper explores the effect of boundary
conditions that incorporate the statistics of the exterior region on the SERVE of elastic
composites. Using Green's function based interaction kernels, coupled with statistical
functions of the microstructural characteristics like one-point and two-point correlation
functions, a novel exterior statistics-based boundary condition or ESBC is derived for the
SERVE. The advantages of the ESBC are established by comparing with results of simu-
lations using conventional boundary conditions. Results of the SERVE simulations sub-
jected to ESBCs are also compared with those from other popular methods like statistical
volume element (SVE) and weighted statistical volume element (WSVE). The proposed
ESBCs offer significant advantages over other methods in the SERVE-based analysis of
heterogeneous materials.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials have gained wide commercial acceptance due to their superior effective thermal and mechanical
properties. These properties depend not only on properties of individual constituents but also on the local microstructural
morphology like fiber volume fraction, inclusion size and shape, and spatial dispersion of fibers. Effective properties are
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evaluated by methods of homogenization or averaging of microscopic variables like stresses and strains, with various as-
sumptions on the representative microstructural domain. A number of analytical models have evolved within the frame-
work of small deformation elasticity theory (Eshelby, 1957; Benvensite, 1987; Hill, 1965; Hashin and Shtrikman, 1963;
Hashin, 1983; Mura, 1987) to predict homogenized macroscale constitutive response of heterogeneous materials. Their
underlying principle is the Hill–Mandel condition of homogeneity (Hill, 1965, 1967; Mandel, 1971), which states that for
largely separated microscopic and macroscopic length scales, the volume-averaged strain energy is obtained as the product
of the volume-averaged stresses and strains in representative microstructural domain. Hierarchical models, involving
computational micromechanical analysis, have become increasingly popular for transfer of information from lower to higher
scales, usually in the form of effective material properties (Böhm, 2004; Chung et al., 2000; Fish and Shek, 2000; Ghosh
et al., 1995, 1996; Guedes and Kikuchi, 1991; Kouznetsova et al., 2002; Terada and Kikuchi, 2000; Ghosh, 2011; Willoughby
et al., 2012). A number of hierarchical models incorporate the asymptotic homogenization theory with computational
micromechanics models, based on scale-separation with assumptions of macroscopic homogeneity and microscopic peri-
odicity. Uncoupling of governing equations at different scales is achieved through the incorporation of specific boundary
conditions, e.g. uniform displacement, periodicity, etc., on the microscopic representative volume elements or RVEs. FE2

multi-scale methods in Feyel and Chaboche (2000) solve micro-mechanical RVE models for every element integration point
in the computational domain to obtain homogenized properties.

Determination of effective material properties necessitates the establishment of a microstructural representative volume
element or RVE (Stroeven et al., 2004; Thomas et al., 2008; Heinrich et al., 2012). The concept of RVE was introduced in Hill
(1963) as a microstructural subregion that is representative of the entire microstructure in an average sense. This was
extended in Hashin and Shtrikman (1963), Jones (1975), and Drugan and Willis (1996) to a reference volume that is small
compared to the entire body, for which the volume average of state variables such as strains, stresses, etc., may be taken to
be the same as those for the entire body. The RVE can vary with the material property of interest, even for the same
microstructure. A large number of studies have been conducted with unit cells as the RVE, consisting of a single hetero-
geneity in a regular (square, cubic, hexagonal, etc.) matrix (Zeman and Sejnoha, 2007). The underlying assumption in these
studies is that the microstructure is a uniform, periodically repetitive array of heterogeneities and the body is subjected to
homogeneous boundary conditions. The occurrence of perfect uniformity or periodicity is however rare for many hetero-
geneous microstructures, as shown in the composite microstructure of Fig. 1(a) (Shan and Gokhale, 2002). For these non-
uniform microstructures it is difficult or even impossible to identify RVEs following the strict definitions. In these cases, it is
important to identify statistically equivalent RVEs or SERVEs for meaningful simulation of microscopic regions. Methods of
identifying the SERVE from morphological considerations, using a combination of statistical and computational analyses,
have been proposed in Swaminathan et al. (2006a,b) and Ghosh (2011). The SERVE is identified as the smallest, statistically
equivalent region of the microstructure, e.g. the micrograph in Fig. 1, that exhibits the following characteristics.

Nomenclature

RVE representative volume element
SERVE statistically equivalent representative volume

element
ESBC exterior statistics-based boundary condition
ATDBC affine transformation-based displacement

boundary condition
UTBC uniform traction boundary condition
PBC periodic boundary condition
SIGF statistically informed Green's function
SVE statistical volume elements
WSVE weighted statistical volume element
MVE microstructural volume element
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Fig. 1. (a) Optical micrograph of a fiber-reinforced composite microstructure; (b) computer simulated microstructure tessellated into Voronoi cells showing
microstructural RVE regions.

S. Ghosh, D.V. Kubair / J. Mech. Phys. Solids 95 (2016) 1–242



Download English Version:

https://daneshyari.com/en/article/797192

Download Persian Version:

https://daneshyari.com/article/797192

Daneshyari.com

https://daneshyari.com/en/article/797192
https://daneshyari.com/article/797192
https://daneshyari.com

