
Author's Accepted Manuscript

Martensite transformation behavior and mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steels

Yichong Zhang, Moucheng Li, Hongyun Bi, Jiaqing Gu, Dexiang Chen, E Chang, Wei Zhang

www.elsevier.com/locate/msea

PII: S0921-5093(18)30483-0

DOI: https://doi.org/10.1016/j.msea.2018.03.113

Reference: MSA36306

To appear in: Materials Science & Engineering A

Received date: 31 January 2018 Revised date: 26 March 2018 Accepted date: 28 March 2018

Cite this article as: Yichong Zhang, Moucheng Li, Hongyun Bi, Jiaqing Gu, Dexiang Chen, E Chang and Wei Zhang, Martensite transformation behavior and mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless s t e e 1 s , *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.03.113

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Martensite transformation behavior and mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steels

Yichong Zhang^{a,b}, Moucheng Li^c, Hongyun Bi^{b,*}, Jiaqing Gu^b, Dexiang Chen^b, E Chang^b, Wei
Zhang^b

^aSchool of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

^bShanghai Baosteel Research Institute, Shanghai 200431, P.R. China

^cInstitute of Materials, Shanghai University, Shanghai 200072, P.R. China

*Corresponding author: Tel.: 86-21-26034614; fax: 86-21-26034622; hybi@baosteel.com

Abstract

In order to understand the mechanism of substitution for nickel with manganese in metastable austenitic stainless steels 14Cr10Mn and 16Cr6Mn, the transformation behavior of ϵ - and α '-martensite and the corresponding mechanical properties were investigated in this study. The microstructures and tensile and hardness properties of the cold-rolled steels under different rolling reductions at ambient temperature were measured using X-ray diffraction (XRD), scanning electron microscope (SEM) together with an electron back scatter diffraction (EBSD) and transmission electron microscope (TEM). The results show that α '-martensite is not easy to be transformed from austenite, and the martensite transformation $\gamma \to \epsilon \to \alpha$ ' in 14Cr10Mn and 16Cr6Mn metastable stainless steels is found during cold rolling. The results also reveal that ϵ -martensite acts as an hardness reinforcing phase, and high total martensite volume fraction and ratio of ϵ - and α '-martensite content are helpful to achieve higher tensile strength

Download English Version:

https://daneshyari.com/en/article/7972534

Download Persian Version:

https://daneshyari.com/article/7972534

<u>Daneshyari.com</u>