
Author's Accepted Manuscript

Microstructure and thermal stability evolution behavior of Sc-containing A356.2 aluminum alloy under cyclic thermal exposure conditions

Jian Ding, Pan Zhang, Xingwen Li, Lisheng Wang, Wenzhe Liao, Lixin Huang, Xingchuan Xia

www.elsevier.com/locate/msea

PII: S0921-5093(18)30335-6

DOI: https://doi.org/10.1016/j.msea.2018.03.002

Reference: MSA36195

To appear in: Materials Science & Engineering A

Received date: 17 December 2017 Revised date: 17 February 2018 Accepted date: 1 March 2018

Cite this article as: Jian Ding, Pan Zhang, Xingwen Li, Lisheng Wang, Wenzhe Liao, Lixin Huang and Xingchuan Xia, Microstructure and thermal stability evolution behavior of Sc-containing A356.2 aluminum alloy under cyclic thermal exposure conditions, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.03.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microstructure and thermal stability evolution behavior of Sc-containing A356.2

aluminum alloy under cyclic thermal exposure conditions

Jian Ding¹, Pan Zhang¹, Xingwen Li¹, Lisheng Wang³, Wenzhe Liao¹, Lixin Huang³, Xingchuan Xia^{1, 2}*

¹School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China

2School of Material Science and Engineering, Tianjin University, Tianjin 300130, PR China

³CITIC Dicastal Co., LTD, Qin Huangdao 066011, Hebei, PR China

ABSTRACT

In this work, trace amount of scandium element (Sc, 0.2 wt. %) was added to

investigate microstructure and thermal stability evolution behavior of Sc-containing

A356.2 alloy by using cyclic thermal exposure method. OM, SEM, TEM and image

analysis software were applied to evaluate microstructure evolution. The results

showed that both secondary dendrite arm spacing (SDAS) and average area of

eutectic silicon increased with exposure temperature and exposure time increasing. In

addition, thermal stabilities of ultimate tensile strength (UTS), yield strength (YS),

elongation (EI) and micro-hardness were sensitive to cyclic thermal exposure

temperatures. E.g., under 200°C exposure temperature, more than 6 cycles were

needed for the mechanical properties getting stable, and with exposure temperature of

250°C about 4 cycles were needed. While, for exposure temperatures of 300°C and

350°C, only 2 cycles were needed. Precipitation mechanisms of Nano Si (syn) phase

and Al₃Sc phase inside of grains were discussed, and comprehensive effect of Al₃Sc,

Nano Si (syn) phase, SDAS and eutectic silicon was responsible for the thermal

stability of the alloy under cyclic thermal exposure conditions.

Key Words: A356.2 alloy; Cyclic thermal exposure; Scandium; Thermal stability

Download English Version:

https://daneshyari.com/en/article/7972664

Download Persian Version:

https://daneshyari.com/article/7972664

Daneshyari.com