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a b s t r a c t

Multiscale models are designed to handle problems with different length scales and time
scales in a suitable and efficient manner. Such problems include inelastic deformation or
failure of materials. In particular, hierarchical multiscale methods are computationally
powerful as no direct coupling between the scales is given. This paper proposes a hier-
archical two-scale setting appropriate for isothermal quasi-static problems: a macroscale
treated by continuum mechanics and the finite element method and a microscale mod-
elled by a canonical ensemble of statistical mechanics solved with molecular dynamics.
This model will be implemented into the framework of the heterogeneous multiscale
method. The focus is laid on an efficient coupling of the macro- and micro-solvers. An
iterative solution algorithm presents the macroscopic solver, which invokes for each
iteration an atomistic computation. As the microscopic computation is considered to be
very time consuming, two optimisation strategies are proposed. Firstly, the macroscopic
solver is chosen to reduce the number of required iterations to a minimum. Secondly, the
number of time steps used for the time average on the microscale will be increased with
each iteration. As a result, the molecular dynamics cell will be allowed to reach its state of
thermodynamic equilibrium only in the last macroscopic iteration step. In the preceding
iteration steps, the molecular dynamics cell will reach a state close to equilibrium by using
considerably fewer microscopic time steps. This adapted number of microsteps will result
in an accelerated algorithm (aFE-MD-HMM) obtaining the same accuracy of results at
significantly reduced computational cost. Numerical examples demonstrate the perfor-
mance of the proposed scheme.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in nature show a multiscale character in space and time. Inelastic deformation, failure of materials,
micro- and nano electro-mechanical systems are just a few examples. These problems may result from material in-
homogeneities or complex mechanical processes. Multiscale models are able to incorporate the physics of the involved
scales in a suitable and efficient manner. In particular, two-scale methods employing a continuum-on-atomistic setting have
recently become popular in the literature. The information exchange between these scales in a numerical simulation per-
mits a classification into two groups: hierarchical (or serial) and concurrent (or simultaneous) methods.
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The continuum-on-atomistic setting is extensively debated in the literature in a concurrent coupling of scales (Curtin and
Miller, 2003; Miller and Tadmor, 2009; Zeng and Li, 2010). One or a few critical regions of the system are atomistically
modelled (e.g. to resolve local defects or singularities) and directly coupled with the surrounding continuum regions. The
quasi-continuum (QC) method (Tadmor et al., 1996; Miller and Tadmor, 2009) is one of the most successful models in
concurrent coupling. It is based on standard finite elements and constitutive equations derived from atomistic interactions.
Next to that, there are the bridging-scale method (Liu et al., 2007) and the multiscale continuum field theory (Zeng et al.,
2011). The coarse-grained molecular dynamics (CGMD) (Rudd and Broughton, 1998, 2000) approach produces equations of
motion for the nodal fields of a finite element model, which are derived from an underlying atomistic model at thermo-
dynamic equilibrium. Furthermore, the atomic-scale finite element method (AFEM) (Liu et al., 2004a, 2005; Xu and Liu,
2014) extends the finite element method to the atomic scale. A seamless multiscale method suitable for large scale static
problems may be achieved by combining AFEM with continuum FEM elements. Another attractive method is the so-called
perfectly matched multiscale simulation (PMMS) (To and Li, 2005; Li et al., 2006), which was initially derived to reduce
spurious phonon reflections at the multiscale interface. Besides, a computational multiscale method to couple thermo-
mechanical equations at the coarse scale with nonequilibrium molecular dynamics at the fine scale was developed (Liu and
Li, 2007; Li et al., 2008b; Li and Sheng, 2010; Li and Tong).

In contrast, a hierarchical continuum-on-atomistic coupling (e.g. to supply constitutive relations at the macroscale) is not
extensively investigated in the literature (Tadmor et al., 2000; Liu et al., 2004b). The hierarchical two-scale method first
develops a microscale model in the shape of an appropriately chosen representative volume element (RVE) that comprises
all the various microstructural heterogeneities, and then deduces the macroscale constitutive laws and state variables, such
as stress and heat flux, from the microscopic behaviour by an averaging procedure (Hill, 1972). As no direct coupling be-
tween the two scales is given, this method is computationally powerful. This procedure is known as homogenisation in the
literature and is usually used in a continuum-on-continuum setting (Geers et al., 2010). Hierarchical continuum-on-ato-
mistic models are sparse in the literature, even when the numerical implementation may be considered to be straight-
forward (E and Engquist, 2005; E et al., 2005; Abdulle et al., 2012). Chung and Namburu (2003) and Clayton and Chung
(2006) developed an approach to embed atomistic physics into a continuum formulation for large-scale systems. This was
achieved by applying the Cauchy–Born rule to the atomic scale and superposing perturbation displacements at each load
increment to the microscale. A bottom-up approach denotes the generalised mathematical homogenisation (GMH) method
(Fish et al., 2007; Fish and Fan, 2008; Li et al., 2008a), which evolves a continuum model by advancing a sequence of fine
scale atomistic models in representative volumes placed at the quadrature points of the discretised continuum model.
However, the modelling of the representative volumes gives a molecular dynamics-like problem and is not integrated for
the full atomistic motion. A framework that combines the serial and concurrent coupling in the generalised mathematical
homogenisation method is given by Fish et al. (2010). Chockalingam and Wellford (2011) give a homogenisation procedure
with an emphasis on thermal problems. It is based on a uniform weighted residual approximation method to consistently
model the interaction of the continuum and atomistic scale. A coarse-grained molecular dynamics model for solid systems
based on the Mori–Zwanzig projection method is described by Li (2010), while an atomistic-continuum coupled model for
thermo-mechanics of materials in micro-nano scales is presented by Xiang et al. (2012). Furthermore, the remarkable
heterogeneous multiscale method (described in Section 2) is ageneral top-down approach to design multiscale algorithms.
While this method is mainly used for concurrent coupling schemes in the literature, the proposed methodology also applies
to a hierarchical coupling.

Let us assume that in a two-scale continuum-on-atomistic setting the macroscopic solver and the microscopic solver are
chosen according to the problem at hand. Furthermore, let us assume that both solvers are optimised on their own scale. On
the macroscale this could be the type of the solver, the number of integration points or the number of elements. On the
microscale this could be the type of the solver, the size of the microscopic time step or the number of atoms in a molecular
dynamics cell. Next to this separate optimisation, there is potential for improving the model's efficiency in the coupling of
solvers, which is not extensively exploited in the literature so far. The purpose of this paper is to investigate the possibility of
enhancing the coupling of a macroscopic iterative solver with a microscopic one. Firstly, the macroscopic solver could be
chosen to invoke the microscopic computation as rarely as possible, if the atomistic simulation is identified as the com-
putationally most intensive factor. Secondly, if an iterative macroscopic solver is chosen, the number of microscopic steps
could be adjusted in the iterations to give the same accuracy of the converged result faster. The obtained accelerated
algorithm (we will call it aFE-MD-HMM) will yield the same accuracy of the results at significantly reduced computational
cost.

The paper is organised as follows. Section 2 presents the heterogeneous multiscale method and its seamless derivate.
Then, Section 3 gives the proposed two-scale continuum-on-atomistic model suitable for quasi-static isothermal problems.
Section 4 demonstrates the performance of the proposed scheme on classical problems in elasticity. Finally, a conclusion
closes the paper.

2. The HMM framework

The heterogeneous multiscale method (HMM) (E and Engquist, 2003; Li and E, 2005; E et al., 2007; Abdulle and
Nonnenmacher, 2009; Abdulle et al., 2012) provides a top-down approach in modelling multiscale problems. The
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