
Author's Accepted Manuscript

A Study of Low Cycle Fatigue Life and its correlation with Microstructural Parameters in IN713C Nickel Based Superalloy

J. Salvat Cantó, S. Winwood, K. Rhodes, S. Birosca

www.elsevier.com/locate/msea

PII: S0921-5093(18)30114-X

DOI: https://doi.org/10.1016/j.msea.2018.01.083

Reference: MSA36037

To appear in: Materials Science & Engineering A

Received date: 27 November 2017 Revised date: 19 January 2018 Accepted date: 22 January 2018

Cite this article as: J. Salvat Cantó, S. Winwood, K. Rhodes and S. Birosca, A Study of Low Cycle Fatigue Life and its correlation with Microstructural Parameters in IN713C Nickel Based Superalloy, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2018.01.083

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Study of Low Cycle Fatigue Life and its correlation with Microstructural Parameters in

IN713C Nickel Based Superalloy

J. Salvat Cantó¹, S. Winwood², K. Rhodes², S. Birosca¹

¹Materials Research Centre, College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, UK.

²Cummins Turbo Technologies, St. Andrews Rd., Huddersfield HD1 6RA, UK.

*Corresponding author. Address: Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, UK. 840409@swansea.ac.uk

Abstract

Up to date, IN713C Nickel-based superalloy has been continued to be the best alloy candidate for turbocharger wheel applications due to its adequate fatigue property and resistance to degradation under harsh operating environments. Throughout this study, three different batches of as-cast IN713C nickel based superalloys with different microstructures including columnar, equiaxed and transition microstructures were investigated. Strain control Low Cycle fatigue (LCF) tests were conducted for the three different microstructures, achieving fatigue life between 100 and runout at 100,000 cycles, depending on the testing parameters. The fracture mechanics and failure mechanism were correlated to the alloy's microstructure, texture and chemical composition under various LCF conditions using optical microscopy, SEM, EDX and EBSD. In the current study an exact correlation between alloy's microstructure/microtexture and LCF endurance is established. The results showed that equiaxed microstructure has a superior fatigue life than the transition microstructure by 10% and columnar microstructure by > 200% at a given

Download English Version:

https://daneshyari.com/en/article/7973174

Download Persian Version:

https://daneshyari.com/article/7973174

<u>Daneshyari.com</u>