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ABSTRACT

Phase-field model is a powerful tool for studying the microstructure evolution of
materials. This paper seeks to introduce phase-field modeling to the field of soft materials,
especially for studying polymeric gels. A general framework for the field theory of coupled
large deformation and mass transport is established, and two specific models of diffuse
interface are proposed. The ideal liquid-like interface has a deformation-independent
energy and gives rise to a constant surface tension, and a non-ideal interface would result
in a strain-dependent surface stress. Either model gives a stress field consistent with the
effect of interface line force. The field theory is implemented into a finite-element code,
and several numerical examples are calculated with representative material models in

which deformation is weakly or strongly coupled with mass transport. The numerical
models demonstrate the versatility of the phase-field methodology, and reveal some
interesting phenomena due to the coupling. For example, the composition of a separated
phase is significantly affected by the kinematic constraint, and varies during coarsening.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Phase field is a versatile tool for modeling phase transition and morphological and microstructure evolution in
condensed matter, and has undergone continuous development for various applications (Boettinger et al., 2002; Chen,
2002; Emmerich, 2008). In this paper, we seek to advance the theory to incorporate concurrent finite deformation and mass
transportation. Besides the classic problem of diffusional solid-state transition in alloys (Cahn, 1961; Onuki, 1989a; Onuki
and Furukawa, 2001), a typical problem requiring such considerations is the volumetric phase separation of polymeric gels
(Shibayama and Tanaka, 1993; Matsuo and Tanaka, 1988; Shibayama and Nagai, 1999; Hu et al., 2001). A swollen gel consists
of a crosslinked polymer network and a solvent. Under certain conditions, a homogeneous gel may separate into shrunk and
swollen phases characterized by the drastic differences in both solvent concentration and the stretch of polymer network
(Tanaka, 1979; Hochberg and Tanaka, 1979). During the phase separation of a gel, the growth of one phase is enabled by
absorbing swelling liquid from its neighbors, as well as spatially replacing other phases (Shibayama and Tanaka, 1993).
Understanding the physics of this model system will provide further insights towards the role of elasticity in pattern
formation in soft materials during more complicate processes, such as gelation (Bansil et al., 1992; Matsuo et al., 1993; Hong
and Chou, 2000), transient gel formation during viscoelastic phase separation (Tanaka, 2000), phase dynamics in polymer-
stabilized liquid crystals (Lapena et al., 1999), vesicle dynamics (Du et al., 2004; Biben et al., 2005), and even the growth of
biological tissues (Lappa, 2004). Unfortunately, most established theoretical analysis are limited to the small-strain region
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(Cahn, 1961; Tanaka et al., 1985; Onuki, 1988, 1989a, 1989b; Onuki and Furukawa 2001; Garcke, 2003) or homogeneous
deformation (Hirotsu and Onuki 1989; Cai and Suo 2011), whereas the inhomogeneous stress plays an dominant role in the
morphology (Nishimori and Onuki, 1990; Onuki and Puri, 1999; Onuki and Furukawa, 2001) and the kinetics of pattern
growth (Tanaka, 2000), and the typical strain involved is several hundred percent, for soft materials in particular. A few
efforts have been made to consider finite deformation and its coupling with swelling, and interesting structures similar to
experimental observation have been revealed (Onuki and Puri, 1999; Uchida, 2002; Zhou et al., 2010). The effect of
introducing both kinematic and physical nonlinearity is yet to be discussed, and the detailed phase separation processes in
these systems are far from being fully understood.

Phase-field models are distinguished by two principle characteristics: a continuous phase field to differentiate domains
of dissimilar microstructures (Landau and Khalatikow, 1965), and a diffuse interface across which physical properties
smoothly transition from one phase to another (Van der Waals, 1894). Depending on the nature of the problem, the phase
field could be an auxiliary variable (Collins and Levine, 1985; Karma et al., 2001), or a physical parameter (Cahn and Hilliard,
1958; Landau and Khalatikow, 1965; Cahn and Allen, 1977). In either case, the diffuse interface is associated with an excess
free energy, which is often written as a function of the spatial gradient of the phase field. However, in a large-deformation
context, it is unclear whether the gradient should be taken with respect to the deformed configuration or the reference
configuration. It has recently been shown that by using the gradient in the deformed configuration, the interface energy
function could recover the behavior of surface tension (Levitas and Samani, 2011). As will be shown in the current paper,
such an interface model represents a liquid-like interface, on which the molecules are capable of rearranging themselves.
The corresponding interface energy per unit current area is independent of the state of deformation. More generally, the
interface energy may vary with deformation. For example, for a solid-like interface that preserves its atomic structure
during deformation, the surface tension may be a function of strain, and is often referred to as the surface stress
(Shuttleworth, 1950; Gurtin et al., 1998). Although the effect of surface tension/stress on deformation or stress field could
often be neglected on macroscopic structures, it is of importance to nanomaterials (Levitas and Samani, 2011) in which the
interfacial layer occupies a significant portion of the total volume, and at a much larger length scale to soft materials which
deform under very low forces. In this work, we aim at formulating a general framework for the phase-field model of coupled
deformation and mass transport, and developing interface models which describe the behaviors of liquid-like and solid-like
interfaces.

Thermodynamic theories of coupled mass transport and elastic deformation date back at least to Gibbs (1878), who
formulated the equilibrium theory of a solid that absorbs liquid. The more general non-equilibrium theory that describes the
transport processes is known as poroelasticity (Biot, 1941; Rice and Cleary, 1976). Specifically for polymeric gels, existing
models include nonlinear poroelasticity (e.g. Baek and Srinivasa, 2004; Hong et al., 2008; Duda et al., 2010; Chester and
Anand, 2010), and multi-phasic models (e.g. Doi, 2009; Rajagopal, 2003). However, with these continuum field theories
alone, it is difficult to deal with problems like phase separation, in which a boundary between domains could spontaneously
emerge, migrate, and vanish. In this paper, we extend the capability of nonlinear poroelasticity by combining it with a
phase-field model. In Section 2, by introducing the gradient energy terms, the basic non-equilibrium thermodynamic theory
is modified to incorporation the interface contribution. Two interface models and their coupling with elastic deformation is
introduced in Section 3. The theory is then specialized with a detailed material model and tested with finite-element
calculations in Section 4. It is shown both analytically and numerically that the liquid-like interface model gives a
thermodynamically consistent contribution to the stress field. The coupling behavior of elastic deformation and mass-
transport-enabled phase separation is illustrated through several numerical examples. The effect of strong coupling and
elastic misfit between separated phases is demonstrated through a numerical model by assuming the molecular
incompressibility. The effect of strain-dependent interface stress is exemplified through a model with stress-induced
interface anisotropy.

2. Non-equilibrium thermodynamics

The microstructure evolution of a multicomponent material system usually involves mass transportation and structure
reconfiguration. To track the deformation, we introduce the reference by assuming that at least some material particles do
not change relative positions and the aggregate remains to be a continuum during the evolution process. An example of the
background continuum frame is the polymer network of a permanently crosslinked gel. Imagine attaching to these material
particles a set of markers, with coordinates X in the reference state. We will associate the properties of a material particle to
the local marker, by writing the physical fields as functions of X and time t. The coordinates of a material particle at time ¢,
for example, is written as X(X,t). The field of deformation gradient,

oxi(X,t)

Fig(X,t) = X

(M

measures the deformation of the continuum part of the material.

Just as all phase-field models in a small-deformation context, we differentiate dissimilar phases using a continuous phase
field, and write it also as a function of the reference coordinates and time, ((Xt). The phase field may be conservative, such
as the concentration of a species, or non-conservative, such the internal variable characterizing the state of damage. While
the general framework is applicable to both cases, in the current paper, we will illustrate it through the conservative case, in



Download English Version:

https://daneshyari.com/en/article/797338

Download Persian Version:

https://daneshyari.com/article/797338

Daneshyari.com


https://daneshyari.com/en/article/797338
https://daneshyari.com/article/797338
https://daneshyari.com

