
Author's Accepted Manuscript

Effects nano-graphite of content the characteristics of spark plasma sintered ZiB2-SiC composites

Mehdi Shahedi Asl, Mehran Jaberi Zamharir, Zohre Ahmadi, Soroush Parvizi

www.elsevier.com/locate/msea

PII: S0921-5093(18)30037-6

DOI: https://doi.org/10.1016/j.msea.2018.01.038

Reference: MSA35992

Materials Science & Engineering A To appear in:

Received date: 22 November 2017 Revised date: 8 January 2018 Accepted date: 9 January 2018

Cite this article as: Mehdi Shahedi Asl, Mehran Jaberi Zamharir, Zohre Ahmadi and Soroush Parvizi, Effects of nano-graphite content on the characteristics of spark plasma sintered ZiB2-SiC composites, Materials Science & Engineering A, https://doi.org/10.1016/j.msea.2018.01.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of nano-graphite content on the characteristics of spark plasma sintered ZiB₂–SiC composites

Mehdi Shahedi Asl ^{a*}, Mehran Jaberi Zamharir ^b, Zohre Ahmadi ^b, Soroush Parvizi ^{c*}

parvizi@srttu.edu

Abstract

In this study, ZrB₂–25 vol% SiC composite containing 0, 2.5, 5, 7.5 and 10 wt% graphite nanoflakes were prepared by spark plasma sintering (SPS) process at 1900 °C for 7 min under 40 MPa. The fabricated composite samples were compared to examine the influences of nanographite content on the densification, microstructure and mechanical properties of ZrB₂–SiC-based ultrahigh temperature ceramics. Fully dense composites were obtained by adding 0-5 wt% nano-graphite, but higher amounts of additive led to a small drop in the sintered density. The growth of ZrB₂ grains was moderately hindered by adding nano-graphite but independent of its content. The hardness linearly decreased from 19.5 for the graphite-free ceramic to 12.1 GPa for the sample doped with 10 wt% nano-graphite. Addition of graphite nano-flakes increased the fracture toughness of composites as a value of 8.2 MPa m^{1/2} was achieved by adding 7.5 wt% nano-graphite, twice higher than that measured for the graphite-free sample (4.3 MPa m^{1/2}). The in-situ formation of ZrC and B₄C nano-particles as well as the presence of unreacted graphite nano-flakes led to a remarkable enhancement in fracture toughness through activating several toughening mechanisms such as crack deflection, crack bridging, crack branching and graphite pullout.

Keywords: spark plasma sintering; zirconium diboride; graphite nano-flake; nanocomposite; densification; mechanical properties.

^a Department of Mechanical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

^b Ceramic Department, Materials and Energy Research Center (MERC), Karaj, Iran

^c Faculty of Materials Engineering and New Technologies, Shahid Rajaee Teacher Training University, Tehran 16785-136, Iran shahedi@uma.ac.ir

^{*}Corresponding authors.

Download English Version:

https://daneshyari.com/en/article/7973462

Download Persian Version:

https://daneshyari.com/article/7973462

Daneshyari.com