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a b s t r a c t

This paper addresses the theoretical prediction of the quasiconvex hull of energy-minimizing

strains that can be realized by martensitic microstructures. Polyconvexification and related

notions are used to derive some upper bounds (in the sense of inclusion) on the quasiconvex

hull. Lower bounds are constructed by lamination techniques. The geometrically nonlinear

theory (finite strains) is considered in the present Part 1. Analytical expressions are obtained

for a three-well problem which encompasses the cubic to tetragonal transformation as a

special case. Twelve-well problems related to cubic to monoclinic transformations are also

studied. In that case, sufficient conditions are derived for the microstructure to be restricted to

only two of the 12 wells.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Some metallic alloys exhibit a solid/solid phase transformation between different crystallographic structures, known as
austenite (stable at high temperature) and martensite (stable at low temperature). That phase transformation can be
triggered both by thermal and mechanical loading. In terms of crystallographic structure, the austenite has a higher
symmetry than the martensite. This leads one to distinguish several symmetry-related martensitic variants. Those variants
correspond to different orientations of the martensitic lattice with respect to the austenitic lattice. Accordingly, to each
martensitic variant is attached a transformation strain, describing the deformation between the crystallographic structures
of the austenite and the martensite. The number of martensitic variants as well as the corresponding transformation
strains depends on the alloy considered, through the structure of the austenite and martensite lattices. Some common
examples include the cubic to tetragonal transformation (MnCu, MnNi), the cubic to orthorombic transformation
(b01CuAlNi) and the cubic to monoclinic transformations (NiTi, g01CuAlNi), corresponding respectively to 3, 6 and 12
martensitic variants.

The phase transformation between austenite and martensite gives rise to the shape memory effect displayed by alloys
such as NiTi or CuAlNi: cooling down a stress-free sample below a critical temperature transforms the homogeneous
austenite to a martensitic microstructure, in which the martensitic variants arrange themselves so as to produce a stress-
free state with no macroscopic deformation. This phenomenon is classically referred to as self-accommodation. Deforming
the sample entails a reorientation of the variants, i.e. a phase transformation of some martensitic variants to others. After
unloading the sample, a residual stress-free strain is observed at the macroscopic level. That residual strain results from
the cooperative effect of the microscopic transformation strains in each variant. Heating the sample transforms the
martensite back in austenite, thus restoring the initial configuration.
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The shape memory effect is obviously limited: if for instance the strain imposed in the cooled state is too large, plastic
deformations will occur and the material will no longer be able to recover its initial shape after heating. This motivates the
definition of recoverable strains as macroscopic strains that can be restored by the shape memory effect. As explained by
Bhattacharya and Kohn (1997), recoverable strains can be interpreted as minimizers of the macroscopic energy at low
temperature. That macroscopic energy is itself obtained as the relaxation of a multi-well energy function C that models
the behavior of the material at a microscopic level. The relaxation procedure is notoriously difficult to perform and
essentially consists in finding the austenite/martensite microstructures which minimize the global energy. This paper is
essentially concerned with the theoretical prediction of the set of strains that minimize the macroscopic (or effective)
energy, using the framework of nonlinear elasticity.

The problem can be formulated either in the geometrically nonlinear setting or in the geometrically linear setting.
The geometrically nonlinear setting is more accurate and therefore to be preferred, especially as uniaxial measurements
show that recoverable strains may be of the order of 10%. It turns out, however, that the problem is significantly more
tractable in the geometrically linear setting, which in turn allows the analysis to be pushed further. For three-dimensional
problems, exact solutions are available only in few cases. In the geometrically nonlinear theory, Ball and James (1992)
solved the case of two compatible variants with the same determinant. Bhattacharya and Dolzmann (2001) extended that
solution to a special case of the four-well problem, which remains two-dimensional in nature. In the geometrically linear
theory, the solution of the two-well problem has been obtained by Kohn (1991). Smyshlyaev and Willis (1998) developed
the approach of Kohn (1991) and adapted it to the three-well problem, deriving a lower bound on the relaxed energy and
giving a sufficient condition for that lower bound to be realizable.

This paper aims at complementing existing results on that problem, essentially through the use of bounds on the set of
energy-minimizing strains. Part 1 is devoted to the geometrically nonlinear theory, whereas the geometrically linear
theory is considered in Part 2 (Peigney, in press). In Part 1 we are particularly interested in studying the three-well
problem, in the geometrically nonlinear theory. The outline of the present Part 1 is as follows. In Section 2 is derived a
general upper bound based on distinctive properties of Young measures (Kinderlehrer and Pedregal, 1991; Ball and James,
1992; Müller, 1999). Lower bounds are obtained using sequential lamination techniques (Kohn, 1991; Ball and James,
1992; Dolzmann, 1999; Stupkiewicz and Petryk, 2002). To that purpose, the solution of the two-well problem plays an
essential role and therefore is recalled in Section 3. Most of the results in Section 3 are already known, but for the sake of
comprehensiveness they are reported explicitly and stated as theorems for latter reference. The two-well problem also
serves as a first illustrative example of the methodology introduced in Section 2. Building on the results of Sections 2 and 3,
a three-well problem is studied in detail in Section 4. Much emphasis is put on the cubic to tetragonal transformation,
which is a special case of the three-well problem considered. Closed-form expressions of upper and lower bounds on the
set of energy-minimizing strains are obtained and compared. Section 5 focuses on cubic to monoclinic transformations:
using results of Section 2, we give sufficient conditions on the macroscopic deformation for the microstructure to involve
only two of the 12 variants, extending similar studies carried out by Ball and James (1992) and Bhattacharya et al. (1999)
for the cubic to tetragonal and cubic to orthorombic transformations, respectively.

2. Upper bounds on QK

At the microscopic level, the free energy density C of martensitic crystals is classically modeled as a multi-well
function of the form min1r rrnþ1Cr where Cr is the free energy of phase r and n is the number of martensitic variants.
We label the phases so that r¼ nþ1 corresponds to the austenite, and 1rrrn corresponds to the martensite variants.
Each free energy Cr is a function of the deformation gradient F and is frame indifferent, i.e. satisfies CrðRFÞ ¼CrðFÞ for all
R 2 SOð3Þ and for all F. Moreover, the free energies Cr of the martensite variants are symmetry related, i.e. for each
1rrrn there exists a rotation Rr such that

CrðFÞ ¼C1ðRrFRT
r Þ for all F: ð2:1Þ

Let us denote by K the set of deformation gradients F that minimize the function C. The property (2.1) immediately shows
that min Cr ¼min C1 for all rrn, so that min C¼minfmin C1,min Cnþ1g. At a temperature below the transformation
temperature, martensite achieves the minimum energy, i.e. min Cnþ14min C1. In such case, the set K is given by

K¼
[n

r ¼ 1

Kr , ð2:2Þ

where Kr ¼ fF9CrðFÞ ¼min Crg. The frame indifference of Cr implies that Kr can be written as Kr ¼ SOð3ÞUr where Ur is a
set of symmetric definite positive tensors. More specifically, for martensitic crystals, the set Kr assumes the form

Kr ¼ SOð3ÞUr , ð2:3Þ

where the distinct symmetric positive definite tensors fUrg1r rrn are the transformation strains of the different variants.
Note from (2.1) that the strains fUrg are symmetry related, i.e. Ur can be written as Ur ¼ RrU1RT

r , where Rr is the rotation
appearing in (2.1).

Consider now a martensitic single crystal occupying a domain O in the reference configuration. We denote by x/uðxÞ
the mapping between the reference configuration and a deformed configuration at equilibrium. The crystal is subjected to
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