
Author's Accepted Manuscript

On the Origin of the Superior Long-Term Creep Resistance of a 10% Cr Steel

R. Mishnev, N. Dudova, R. Kaibyshev

www.elsevier.com/locate/msea

PII: S0921-5093(17)31659-3

DOI: https://doi.org/10.1016/j.msea.2017.12.066

Reference: MSA35908

To appear in: Materials Science & Engineering A

Received date: 30 August 2017 Revised date: 13 December 2017 Accepted date: 14 December 2017

Cite this article as: R. Mishnev, N. Dudova and R. Kaibyshev, On the Origin of the Superior Long-Term Creep Resistance of a 10% Cr Steel, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2017.12.066

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

On the Origin of the Superior Long-Term Creep Resistance of a 10% Cr Steel

R. Mishnev*, N. Dudova, R. Kaibyshev

Belgorod State University, Belgorod 308015, Russia

* Corresponding author. Tel.: +7 4722 585417; fax: +7 4722 585417. E-mail address: mishnev@bsu.edu.ru (R.

Mishnev)

Abstract

A low-nitrogen 10% Cr martensitic steel containing 3% Co and 0.008% B was shown to exhibit an

extremely long creep rupture time of ~4·10⁴ h under an applied stress of 120 MPa at 650 °C. The

creep behavior and evolution of lath martensite structure and precipitates during creep at these

conditions were studied. The main feature of the microstructure under long-term creep is retention

of the lath structure until rupture. The following microstructural factors affecting the superior creep

resistance were analyzed: 1) alloying by (W+Mo) elements; 2) particles of M₂₃C₆ and Laves phases;

3) homogeneously distributed M(C,N) carbonitrides. It was revealed that nanoscale $M_{23}C_6$ carbides

and M(C,N) carbonitrides compensated the negative effects of W depletion from the solid solution

and extensive coarsening of the Laves phase particles. $M_{23}C_6$ carbides demonstrate a high

coarsening resistance under creep conditions and exert a high Zener drag pressure before rupture

because of the coherency of their interfaces. The strain-induced transformation of a portion of the

precipitated V-rich M(C,N) carbonitrides to the Z-phase does not affect the creep strength because

the Z-phase particles are nanoscale and negligible in quantity.

Keywords: martensite; steel; creep; electron microscopy; precipitation; coarsening.

1. Introduction

Creep-resistant martensitic steels with 9–11% Cr are favorable materials for the turbine

components of fossil-fuel power plants [1,2]. Their alloying design and heat treatment aim to

provide stability to the tempered martensite lath structure (TMLS), which comprises prior austenite

1

Download English Version:

https://daneshyari.com/en/article/7973754

Download Persian Version:

https://daneshyari.com/article/7973754

<u>Daneshyari.com</u>