Author's Accepted Manuscript

Effect of the Annealing Process on the Microstructure and Mechanical Properties of Multilayered Zr/Ti Composites

Weijun He, Jiateng Ma, Yanxin Zhang, Hanying Wen, Qing Liu

www.elsevier.com/locate/msea

PII: S0921-5093(17)31670-2

DOI: https://doi.org/10.1016/j.msea.2017.12.072

Reference: MSA35914

To appear in: Materials Science & Engineering A

Received date: 7 October 2017 Revised date: 16 December 2017 Accepted date: 18 December 2017

Cite this article as: Weijun He, Jiateng Ma, Yanxin Zhang, Hanying Wen and Qing Liu, Effect of the Annealing Process on the Microstructure and Mechanical Properties of Multilayered Zr/Ti Composites, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2017.12.072

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of the Annealing Process on the Microstructure and

Mechanical Properties of Multilayered Zr/Ti Composites

Weijun He*, Jiateng Ma, Yanxin Zhang, Hanying Wen, Qing Liu College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

Abstract: To explore the potential application of Zr-based alloys as structural materials, multilayered Zr/Ti composites were fabricated by a vacuum diffusion annealing bonding process. Scanning electron microscopy (SEM) in tandem with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) was used to characterize the microstructures and chemical elemental distributions of the Zr/Ti laminated metal composites (LMCs). Micro-hardness and in-plane compression tests were conducted to evaluate the mechanical properties of the Zr/Ti LMCs. It is revealed that the microstructure of the Zr/Ti LMCs is composed of alternating Zr layers, Ti layers and Zr-Ti mutual diffusion layers (interface layers). The width of the interface layer increases with increased annealing temperature and time. The micro-hardness test results show that the hardness distribution is uneven among the different layers and that the interface layer has the highest hardness. Compression results indicate that the strength of the Zr/Ti LMCs are higher than that of the constituent materials due to the contribution of the interface layer. The diffusion coefficient and the relation between the microstructure and yield strength are also discussed in this study.

Keywords: Multilayered Zr/Ti Composite; Microstructure; Mechanical Properties; Diffusion Bonding

1. Introduction

Zirconium (Zr) based alloys are widely used as cladding materials in the nuclear industry because of their small thermal neutron absorption, excellent corrosion resistance and acceptable mechanical properties [1-3]. Zr-Sn [4, 5], Zr-Nb [6, 7] and Zr-Sn-Nb [8, 9] alloys are the most widely used Zr alloys in the nuclear power industry. In these traditional Zr alloys, the selection criteria for the alloying elements are mainly based on the effects of these elements on the thermal neutron absorption and corrosion resistance, which often pay no special attention to the mechanical properties.

^{*} Corresponding author: weijun.he@cqu.edu.cn

Download English Version:

https://daneshyari.com/en/article/7973768

Download Persian Version:

https://daneshyari.com/article/7973768

<u>Daneshyari.com</u>