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a b s t r a c t

We derive solutions of the Kirchhoff equations for a knot tied on an infinitely long elastic

rod subjected to combined tension and twist, and held at both endpoints at infinity.

We consider the case of simple (trefoil) and double (cinquefoil) knots; other knot

topologies can be investigated similarly. The rod model is based on Hookean elasticity

but is geometrically nonlinear. The problem is formulated as a nonlinear self-contact

problem with unknown contact regions. It is solved by means of matched asymptotic

expansions in the limit of a loose knot. We obtain a family of equilibrium solutions

depending on a single loading parameter U (proportional to applied twisting moment

divided by square root of pulling force), which are asymptotically valid in the limit of a

loose knot, �! 0. Without any a priori assumption, we derive the topology of the

contact set, which consists of an interval of contact flanked by two isolated points of

contacts. We study the influence of the applied twist on the equilibrium.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Knots are found in everyday life, shoe lacing being probably the most common example. They are also essential in a
number of activities such as climbing and sailing. In science, knots have long been studied in the field of mathematics, the
main motivation being to propose a topological classification of the various knot types, see the review by Tabor and Klapper
(1994). Recently, there has been an upsurge of interest in knots in the biological context: knots form spontaneously in many
long polymers chains such as DNA (Katritch et al., 1996) or proteins, and have been tied on biological filaments (Arai et al.,
1999). Knotted filaments have a lower resistance to tension than unknotted ones and break preferably at the knot (Saitta
et al., 1999; Pieranski et al., 2001a). Despite a wide range of potential applications, the mechanics of knots is little advanced.
The present paper is an attempt to approach knots from a mechanical perspective by using a well-established model of thin
elastic rods.

The problem of finding so-called ideal knot shapes has received much attention in the past decade (Katritch et al., 1996;
Stasiak et al., 1998). In this geometrical description of tight knots, an impenetrable tube with constant radius is drawn
around an inextensible curve in Euclidean space and one seeks, for each knot type, the configurations of the curve such that
the radius of the tube is maximum. The case of open knots, where the curve does not close upon itself, has been studied by
Pieranski et al. (2001b) in connection with the breakage of knotted filaments under tension (Pieranski et al., 2001a).
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To go beyond a purely geometrical description of knots, it is natural to formulate the problem in the framework of the
theory of elasticity. The case of tight knots, or even of moderately tight knots, leads to a problem of 3D elasticity with
geometrical nonlinearities (finite rotations), finite strains, and self-contact along an unknown surface: there is no hope to
derive analytical solutions. Numerical solution of this problem raises considerable difficulties too, which have not yet been
tackled to the best of our knowledge. In the present paper, we study the limit of loose knots, when the total contour length
captured in the knot is much larger than the radius of the filament. In this limit, it is possible to use a Cosserat type model
and describe the rod as an inextensible curve embedded with a material frame, obeying Kirchhoff equations; as we show,
the equilibria of open knots can be solved analytically in this limit.

Self-contact in continuum mechanics, and in the theory of elastic rods in particular, leads to problems that are both
interesting and difficult. This comes from the fact that the set of points in contact is not known in advance—in fact, not
even the topology of this set is known. This paper builds up on prior work by von der Mosel (1999) and Schuricht and von
der Mosel (2003), who characterize the smoothness of the contact force in equilibria of elastic rods, and by Coleman and
Swigon (2000), who write down the Kirchhoff equations for rods in self-contact explicitly, including the unknown contact
force. These equations have been solved by numerical continuation in specific geometries by Coleman and Swigon (2000),
van der Heijden et al. (2003) and Neukirch (2004). In these papers, the authors simultaneously solve for the nonlinear
Kirchhoff equations and for the unknown contact forces. In the present paper, we show that, under the same set of

assumptions that warrant applicability of the Kirchhoff equations, one can in fact neglect the geometrical nonlinearities in the
region of self-contact. As a result, nonlinearities and contact can be addressed in well-separated spatial domains. This
brings in an important simplification and, as the result, we are able for the first time to derive analytical solutions of a self-
contact problem for rods undergoing finite displacement, exhibiting a non-trivial contact set topology.

Our solution is constructed by matched asymptotic expansions with respect to a small parameter � which is zero for a
perfectly thin rod. As is done routinely in boundary layer analysis, we use qualitative reasonings (dimensional analysis) to
justify how the various quantities scale with the small parameter �. We emphasize that our final solution is exact and does
not involve any other assumption than the smallness of the parameter �: it is asymptotically exact. Our presentation is based
on formal expansions; proofs of convergence are beyond the scope of the present paper and can hopefully be established in
the future. For an introduction to matched asymptotic expansions, see the book by Hinch (1991) or Audoly and Pomeau
(2009).

The mechanical problem considered here is the following. We solve the Kirchhoff equations for an infinite rod, with
clamped boundary conditions at both endpoints at infinity. The rod is inextensible, unshearable and its weight is neglected;
bending and twisting moments are related to curvature and twist by a linear constitutive law given in Eq. (3) but geometric
non-linearities are retained. Topology of the centerline is a prescribed knot shape (we consider trefoil and cinquefoil knots).
This knotted shape is enforced by self-contact forces, which are taken into account in the equations of equilibrium. The rod
is loaded under combined tension force T and twisting moment U at its endpoints; this loading is captured by a single
dimensionless parameter, U, defined in Eq. (19). We derive a family of solutions of the boundary-value problem depending
on the loading parameter U, which is asymptotically valid for small �. In a previous short paper (Audoly et al., 2007),
we have announced some of the results reported here, for the case of a purely tensile loading, U ¼ 0; in addition to
presenting a justification of these results, we address here the influence of twist on the knot shape.

The outline of the present paper is as follows. In Section 2, we introduce the Kirchhoff equations for rods in equilibrium,
including the contact forces relevant for the knotted geometry; we discuss the equivalent formulation as a minimization
problem with topological constraints. In Section 3, we discuss the singular limit of vanishing thickness when the region of
contact collapses to a point connecting a circular loop and two straight tails. In Section 4, we propose a perturbation
scheme of the original equations in powers of �. Following the general methodology of matched asymptotic analysis, the
solution is given by different expansions in different regions—here we have three regions, namely a loop, two tails and a
braid. The form of these expansions is motivated by dimensional analysis for small but non-zero thickness. Next the
expansion is carried out by solving the equations in the various regions: the tails are solved in Section 5, the loop in
Section 6. The solution in the braid region is the most challenging as this is where contact occurs, and in Section 7 we
obtain a universal solution describing the shape of the rod in this region. In Section 8 we build a global solution by
matching the solutions derived previously in each region. Thereby, we obtain a unique equilibrium solution for any given
value of the loading parameters (pulling force and twisting moment). In Section 9, this theory is validated by experiments.
Appendix A discusses the topology of the contact set in more details.

2. Model

We seek equilibrium solutions of a thin elastic rod bent into an open1 knot with a prescribed type, and subjected to
tensile end force and torsional end moment, as shown in Fig. 2. In the present paper, we focus on two specific knot types,
which are open trefoil knots, also called simple knot and noted 31, and open cinquefoil knots, also called double knot and
noted 51, see Fig. 1. Other knot types can be handled similarly. The rod is infinitely long and the loading is applied at
infinity.
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1 In topology, a knot is defined as a closed, non-self-intersecting curve. Here we consider curves having two infinite tails, hence the name ‘open knots’.
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