
Author's Accepted Manuscript

Fabrication of Mg/Al₁₂Mg₁₇ in-situ surface nanocomposite via friction stir processing

M. Azizieh, M. Mazaheri, Z. Balak, H. Kafashan, H.S. Kim

www.elsevier.com/locate/msea

PII: S0921-5093(17)31627-1

DOI: https://doi.org/10.1016/j.msea.2017.12.030

Reference: MSA35872

To appear in: Materials Science & Engineering A

Received date: 14 October 2017 Revised date: 6 December 2017 Accepted date: 8 December 2017

Cite this article as: M. Azizieh, M. Mazaheri, Z. Balak, H. Kafashan and H.S. Kim, Fabrication of $Mg/Al_{12}Mg_{17}$ in-situ surface nanocomposite via friction stir processing, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2017.12.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Fabrication of Mg/Al₁₂Mg₁₇ in-situ surface nanocomposite via friction stir

processing

M. Azizieh¹*, M. Mazaheri², Z. Balak¹, H. Kafashan¹, H. S. Kim³

¹Department of Materials Science and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

²Department of basic sciences, Hamedan University of Technology, Hamedan 65155, Iran

³Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea

*azizieh@iauahvaza.ac.ir, Phone number: +98 912 37 980 88

ABSTRACT

In this study, in-situ magnesium matrix surface nanocomposites were prepared by adding Al particles to an as-cast

pure Mg ingot using friction stir processing (FSP). The effects of the number of FSP passes, tool design, rotational

and travel speeds were investigated. Microstructural investigations showed a significant grain refinement owing to

dynamic recrystallization. According to scanning electron microscopy examinations and X-ray diffraction results,

Al₁₂Mg₁₇ intermetallics were formed during FSP due to chemical reaction at the Al-Mg interface. As a result of

severe plastic deformation, the intermetallic particles formed at nanometre size. X-ray diffraction showed that the

crystalline size of intermetallic particles reached ≤50 nm, due to high material flow during FSP. The intermetallic

formation and grain refining led to an increase in the hardness values (1.5 to 3 times) that of the as-cast pure Mg

ingot.

Keywords: Magnesium; Metal Matrix Composites; Intermetallics;

1. Introduction

The low specific gravity, high specific strength, and high recyclability of Mg based alloys make them very

attractive for aerospace, automotive and industrial devices [1, 2]. However, the mechanical properties of Mg alloys

are not adequate to improve their application. For this reason, in recent years there has been large number of studies

on the fabrication of ceramic particle/Mg alloy composites [3-7]. Generally speaking, there are two major problems

1

Download English Version:

https://daneshyari.com/en/article/7974079

Download Persian Version:

https://daneshyari.com/article/7974079

<u>Daneshyari.com</u>