

Contents lists available at ScienceDirect

Materials Science & Engineering A

journal homepage: www.elsevier.com/locate/msea

Mechanical properties of porous silicon and oxidized porous silicon by nanoindentation technique

Souheyla Fakiri^{a,c,*}, Alex Montagne^b, Khadidja Rahmoun^c, Alain Iost^b, Katir Ziouche^a

^a Univ. Lille, CNRS, UMR 8520 - IEMN, F-59000 Lille, France

^b Arts et Métiers ParisTech, campus de Lille, MSMP, 8 Boulevard Louis XIV, CS 50008-59046 Lille Cedex, France

^c Unité de Recherche Matériaux et Energies Renouvelables, URMER, Université de Tlemcen Abou Bekr Belkaid, B.P. 119, 13000 Tlemcen, Algérie

ARTICLE INFO

Keywords: Mesoporous silicon Oxidation Young's modulus Hardness Porosity Micro cracks

ABSTRACT

A study of mechanical properties of mesoporous silicon (PS) is presented in this article. PS was prepared by electrochemical etching of a heavily doped P^{++} silicon wafer in a hydrofluoric acid electrolyte. The mechanical properties of PS and oxidized PS obtained by thermal treatment, were characterized by the nanoindentation technique associated to the continuous stiffness measurement option. The morphology of PS and oxidized PS were both characterized by scanning electron microscope. It is shown that the Young's modulus and hardness are related to the PS preparing conditions and decrease with increasing porosity. In particular, oxidation improves the mechanical properties of the mesoporous silicon. Surprisingly, modulus and hardness decrease with penetration depth, whereas a compaction could be expected resulting in a rising modulus and hardness. These results are mainly attributed to micro cracks formation, highlighted by focused ion beam cross section.

1. Introduction

Due to its interesting physical properties, porous silicon (PS) is one of materials that attracts more attention since its discovery. Numerous studies have been proposed to characterize it [1–3]. This material has found applications in many devices such as electromagnetic interference filtering radiofrequency (EMIFRF) circuits [4], nanoelectromechanical systems (NEMS) [5], emitters [1], micro-hotplates [2], rechargeable Li-ion battery anode [6] and photonic crystal sensors [7]. PS can be prepared as thin layers or multilayers systems [8-11]. The thermal conductivity of PS is lower than that of mono-crystalline silicon and can be used as thermal insulator in microsystems [12]. This characteristic can find an application in a micro flow meter, where a large periodic thermal conductivity to the substrate surface is needed [3-14]. Monocrystalline PS is mainly classified according to the pore size as nanoporous (≤ 2 nm), mesoporous (2–50 nm) and macroporous silicon (> 50 nm). Thermal properties are primarily related to the porosity [15]; in addition, the dielectric constant of PS can be reduced with increasing porosity [16]. However porosity considerably weakens the structures. Consequently, it becomes essential to characterize precisely the mechanical behaviour of such structures to optimize the manufacturing process in order to reach mechanical requirements. The first studies on the mechanical characteristics of PS were performed in 1997 [17,18]. Numerous researches have been proposed to improve

understanding of the influence of morphology and structure of PS on its mechanical properties, such as micro indentation [19]. These authors examine numerous issues related to the mechanical properties of the mesoporous silicon, such that, the variation in hardness of aged porous silicon low dielectric constant. Nanoindentation has been used to show influence of both PS microstructure and porosity on the mechanical properties [20,21].

In the present study, mechanical properties are investigated using the nanoindentation technique associated to the continuous stiffness measurement method (CSM) [22]. This method has shown its reliability for determining the mechanical properties of materials at the microand nanoscale. This article analyzes the evolutions of hardness and Young's modulus of PS and oxidized PS regarding the compaction of PS and the rupture of the sponge-like structure.

2. Experimental

2.1. Sample preparation

The mesoporous silicon is obtained by electrochemical anodization of heavily doped P⁺⁺ type silicon (resistivity $\rho=0.009\pm0.01~\Omega$ cm, thickness about 380 \pm 25 μm and {100} crystal orientation) in a double-tank cell (AMMT^{*}). The concentration of the electrolyte (by volume) is 27% of hydrofluoric acid, 35% of pure ethanol C₂H₅OH and

https://doi.org/10.1016/j.msea.2017.11.013 Received 1 August 2017; Received in revised form 4 November 2017; Accepted 6 November 2017 Available online 08 November 2017 0921-5093/ © 2017 Published by Elsevier B.V.

^{*} Corresponding author at: Unité de Recherche Matériaux et Energies Renouvelables, URMER, Université de Tlemcen Abou Bekr Belkaid, B.P. 119, 13000 Tlemcen, Algérie *E-mail addresses*: souheyla_fakiri@student.univ-tlemcen.dz (S. Fakiri), katir.ziouche@univ-lille1.fr (K. Ziouche).

Table 1

Manufacturing parameters and description of PS and oxidized PS.

As-prepared PS PS 1 20 5400 44.44 110 Unoxidized PS 2 40 5400 58.17 190 Unoxidized PS 3 60 3600 59.66 170 Unoxidized PS 4 80 3600 68.00 206 Unoxidized PS 5 20 1800 38.16 41.17 Unoxidized PS 6 20 3600 41.86 78.7 Unoxidized PS 7 40 1800 45.71 57.07 Unoxidized PS 8 40 3600 52.55 113 Unoxidized PS 9 40 3600 52.55 113 Unoxidized PS 9 40 3600 52.55 50 550 PS 0 40 5400 550 550 550 PS 0 60 3600 550 550 550 550 550 550 550 550 550	Sample		Current density [mA/cm ²]	Anodizing time [s]	Porosity [%]	Thickness [µm]	Oxidation temperature [°C]
$PS_{2} = 40 = 5400 = 58.17 = 190 = Unoxidized = 170 = Unoxidized = 1800 = 38.16 = 41.17 = Unoxidized = 1800 = 38.16 = 41.17 = Unoxidized = 1800 = 45.71 = 57.07 = Unoxidized = 1800 = 45.71 = 57.07 = Unoxidized = 1800 = 45.71 = 57.07 = Unoxidized = 1800 = 550 = 5$	As-prepared PS	PS_1	20	5400	44.44	110	Unoxidized
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		PS_2	40	5400	58.17	190	Unoxidized
$PS_4 = 80 \qquad 3600 \qquad 68.00 \qquad 206 \qquad Unoxidized \\PS_5 = 20 \qquad 1800 \qquad 38.16 \qquad 41.17 \qquad Unoxidized \\PS_6 = 20 \qquad 3600 \qquad 41.86 \qquad 78.7 \qquad Unoxidized \\PS_7 = 40 \qquad 1800 \qquad 45.71 \qquad 57.07 \qquad Unoxidized \\PS_8 = 40 \qquad 3600 \qquad 52.55 \qquad 113 \qquad Unoxidized \\PS_8 = 40 \qquad 3600 \qquad 550 \qquad 550 \\PS_20 = 40 \qquad 5400 \qquad 550 \\PS_20 = 40 \qquad 5400 \qquad 550 \\PS_30 = 60 \qquad 3600 \qquad 550 \\PS_40 = 80 \qquad 3600 \qquad 550 \\PS_40 = 80 \qquad 3600 \qquad 50 \\PS_8 = 40 \qquad 500 \\PS_8 = 40 \qquad 500 \\PS_8 = 40 \\PS_8 = 40$		PS_3	60	3600	59.66	170	Unoxidized
$PS_{5} = 20 $ $PS_{5} = 20 $ $PS_{6} = 20 $ $PS_{6} = 20 $ $PS_{7} = 40 $ $PS_{8} = 40 $ $PS_{8} = 40 $ $PS_{8} = 40 $ $PS_{10} = 20 $ $PS_{10} = 20 $ $PS_{20} = 40 $ $PS_{20} = 60 $ $PS_{20} = 60 $ $PS_{20} = 80 $ $PS_{10} = 250 $ $PS_{10} = 250$		PS_4	80	3600	68.00	206	Unoxidized
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PS ₅	20	1800	38.16	41.17	Unoxidized
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PS_6	20	3600	41.86	78.7	Unoxidized
Oxidized PS $PS_8 = 40$ 3600 52.55 113 Unoxidized $PS_1O = 20$ 5400 550 550 550 550 98 ₂ O 40 3600 550 550 550 550 550 550 550 550 550		PS ₇	40	1800	45.71	57.07	Unoxidized
Oxidized PS $P_{3,0} = 20$ 5400 550 $P_{3,0} = 40$ 5400 550 $P_{3,0} = 60$ 3600 550 $P_{3,0} = 80$ 3600 550 $P_{3,0} = 80$ 3600 550 $P_{3,0} = 80$ 3600 550 50 $P_{3,0} = 80$ 3600 550 50 50 50 50 50 50 50 50 50 50 50		PS ₈	40	3600	52.55	113	Unoxidized
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oxidized PS	PS_1O	20	5400			550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		PS_2O	40	5400			550
$PS_{4}O = 80 \qquad 3600 \qquad 550 \qquad 500 \qquad $		PS ₃ O	60	3600			550
$\begin{bmatrix} 210 \\ 190 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		PS ₄ O	80	3600			550
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	210 - 190 - (LL) 150 - 30 - 50 - 30 - 150 -	(a)	J=20n J=40n 3000 3500 4000 4500	A/cm ² 1A/cm ² 5000 155 1000 1000 1000 1000 1000 1000	250 200 150 100 50 0 0 20	40 60	80 70 60 50 % 40 His 30 d 20 10 0
	150	30 2000 2000	Etching time (c)	5000 5500	· 20	ront donsity (m A /am ²)	55 100

Fig. 1. Evolution of thickness and porosity of PS as a function of (a) time for two anodizing current density: 20 mA/cm² and 40 mA/cm² and, of (b) current density for a constant anodizing time of 60 min.

Fig. 2. SEM photographs of PS surface and PS in trench: (a, b) sample PS_6 ; (c, d) sample PS_4 .

Download English Version:

https://daneshyari.com/en/article/7974314

Download Persian Version:

https://daneshyari.com/article/7974314

Daneshyari.com