
Author's Accepted Manuscript

Superplasticity in a commercially extruded ZK30 magnesium alloy

Marta Álvarez-Leal, Alberto Orozco-Caballero, Fernando Carreño, Oscar A. Ruano

www.elsevier.com/locate/msea

PII: S0921-5093(17)31419-3

DOI: https://doi.org/10.1016/j.msea.2017.10.093

Reference: MSA35696

To appear in: Materials Science & Engineering A

Received date: 6 September 2017 Revised date: 26 October 2017 Accepted date: 26 October 2017

Cite this article as: Marta Álvarez-Leal, Alberto Orozco-Caballero, Fernando Carreño and Oscar A. Ruano, Superplasticity in a commercially extruded ZK30 magnesium alloy, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2017.10.093

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Superplasticity in a commercially extruded ZK30 magnesium alloy

Marta Álvarez-Leal ^(a, *), Alberto Orozco-Caballero ^(a, b), Fernando Carreño ^(a), Oscar A. Ruano ^(a)

(a) Department of Physical Metallurgy, CENIM-CSIC, Av. Gregorio del Amo 8, 28040 Madrid, Spain

(b) The University of Manchester, School of Materials, MSS Tower, Manchester, M13 9PL, United Kingdom.

* Corresponding author: Tel.: +34 91 5538900 ext: 217.

E-mail address: marta.a.leal@gmail.com, maleal@cenim.csic.es (M. Álvarez-Leal).

Abstract

The high temperature mechanical behavior of a commercial ZK30 Magnesium alloy was studied by means of tensile tests at various temperatures and strain rates. This behavior was related to the complex as-received microstructure that evolves during testing to a microstructure formed by few large grains (≈30 µm) combined with a large amount of small grains (1-5 µm). Large elongations to failure up to 360 % and low apparent stress exponents between 2.6 and 2.9 at low strain rates are a hint of the activation of grain boundary sliding as the controlling deformation mechanism. This is corroborated by the equiaxed microstructure after testing. The stress exponents higher than 2 are attributed to the accelerated grain growth of the dual grain size microstructure.

Download English Version:

https://daneshyari.com/en/article/7974469

Download Persian Version:

https://daneshyari.com/article/7974469

<u>Daneshyari.com</u>