
Author's Accepted Manuscript

Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-dry Cyclic Marine Environments

Wenkui Hao, Zhiyong Liu, Wei Wu, Xiaogang Li, Cuiwei Du, Dawei Zhang

www.elsevier.com/locate/msea

PII: S0921-5093(17)31359-X

DOI: https://doi.org/10.1016/j.msea.2017.10.042

Reference: MSA35645

To appear in: Materials Science & Engineering A

Received date: 21 May 2017 Revised date: 13 October 2017 Accepted date: 13 October 2017

Cite this article as: Wenkui Hao, Zhiyong Liu, Wei Wu, Xiaogang Li, Cuiwei Du and Dawei Zhang, Electrochemical Characterization and Stress Corrosion Cracking of E690 High Strength Steel in Wet-dry Cyclic Marine Environments, *Materials Science & Engineering A*, https://doi.org/10.1016/j.msea.2017.10.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrochemical Characterization and Stress Corrosion

Cracking of E690 High Strength Steel in Wet-dry Cyclic

Marine Environments

Wenkui Hao^{a,b}, Zhiyong Liu^{*a}, Wei Wu^a, Xiaogang Li^a, Cuiwei Du^a, Dawei Zhang^a

a. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China

b. State Grid Smart Grid Research Institute, Beijing 102220, China

Abstract: In this work, stress corrosion cracking (SCC) in E690 high-strength

steel was investigated in simulated wet-dry cyclic marine environments using

electrochemical techniques, constant load SCC examinations, morphology

characterization via scanning electron microscopy (SEM), energy dispersive

spectrometry (EDS) and X-ray diffraction (XRD). It was found that E690 steel

exhibited high SCC susceptibility in wet-dry cyclic offshore environments. The SCC

follows a combined mechanism of anodic dissolution and hydrogen embrittlement,

which nucleate in pits beneath the rust layer and tend to propagate along bainite slices

in a transgranular fashion. Cracks grow with a low propagation rate during the early

stage and expand with a far faster rate when the crack size exceeds a critical value.

Both the electrochemical and SCC behavior of the E690 steel in wet-dry cyclic

environments were influenced by the rust layer. The rust scale causes enrichment of

chloride in the sublayer and localized acidification. This synergistic effect is

responsible for the mechanism and properties of SCC in this material.

* Corresponding author: Tel: +86-10-62333931-509; Fax: +86-10-62334005.

E-mail: liuzhiyong7804@126.com

1

Download English Version:

https://daneshyari.com/en/article/7974503

Download Persian Version:

https://daneshyari.com/article/7974503

Daneshyari.com