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a b s t r a c t 

The purpose of this work was to study the influence of microstructure on effective transverse elastic 

behavior of fiber reinforced composites. Two microstructures were taken into account, hexagonal peri- 

odic and random arrangements of fibers. Unlike classical results at low fiber volume fractions and low 

Young’s modulus contrast between fibers and matrices, results provided by finite elements simulations 

have shown that microstructure strongly affect the effective properties of composite for both high vol- 

ume fractions and Young’s modulus contrast. Results were compared to most common analytical models 

for composites elasticity. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fiber reinforced composites are known to have strength and 

stiffness above those of single phase materials. So they are of large 

interest in practical engineering situations. 

First studies mainly focus on elastic behavior of aligned fibers 

surrounded by a matrix with the help of variational approaches. 

Predictive model for elasticity of such material were based on 

a restricted number of parameters, elasticity coefficients of each 

phase and fiber volume fraction, see review papers of Chamis and 

Sendeckyj (1968) . 

Until Hashin (1962), Hashin and Shtrikman (1963) and Hashin 

(1965) , transverse microstructure of the two phases were gener- 

ally not taken into account. Their models predict two bounds, be- 

tween which any real microstructure could be included, especially 

a transverse arrangement of fibers. The lower bound, noted here 

H S −, can be regarded as a disconnected arrangement of the stiffer 

material whereas the upper bound, H S + , corresponds to a con- 

nected stiffer phase. Higher volume fractions were reached later 

with the help of the boundary element methods, see Eischen and 

Torquato (1993) . 

For simplicity, homogenization on fiber reinforced composite 

was usually reduced to periodic transverse distribution of fibers, 

see Ghosh et al. (1996) and Buryachenko (1999) , while real mi- 
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crostructures are often random or roughly periodic with irregular 

boundaries. 

Microstructures can be characterized statistically by different 

types of correlation functions, see Torquato (1998) . For simplic- 

ity, we restrain microstructure description to two-point correlation 

function, even if at short distances it does not allow a fine de- 

scription of periodic materials. For mono-disparity in size of non- 

overlapping fibers, the easier two-point correlation function is the 

pair distribution function of Hansen and McDonald (1987) , which 

only refers to the positions of fiber centers r i in the transverse sec- 

tion: 

g ( r ) = 

1 

ρN 

∑ 

i 

∑ 

j � = i 
δ
(
r − r i j 

)
(1) 

In which ρ = N/S is the number N of fibers per unit transverse sur- 

face S of the specimen and r the dimensionless space coordinate. 

Such as | r | is just equal to 1 at contact between fibers. A physical 

interpretation of g ( r ) is the number of fiber centers located in a 

volume dr at a distance r from a test fiber, divided by the number 

of fibers given by a uniformly distributed fiber field. 

Hexagonal periodic composites were not isotropic and exhibit 

6 preferred directions related to the 6 near neighbors of the test 

fiber. For a mathematically perfect periodic specimen, g ( r ) cannot 

be represented by a function. It is a spatial distribution of Dirac 

distributions but in practice, there is always an uncertainty on 

fiber locations. The hexagonal morphology suggests expressing r 

in cylindrical coordinates( r, θ ). An inclusion located at ( r, θ ) from 
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Fig. 1. Morphology of microstructures, (a) hexagonal arrangement and unit periodic cell in the transverse plane and (b) random distribution with volume fraction P = 0 . 4 = 

40% at left and P = 0 . 65 at right. 

the test inclusion is in reality placed in a bin of sizes r δr δθ . At 

short distance r , the number of fibers in a bin is very sensitive to 

θ , whereas at long distance it becomes independent or quasi iso- 

topic as it was for a random composite. As g ( r ) is characteristic of 

long range interactions one could expect a similar effective elastic 

behavior for random and hexagonal composites. 

Actually at same volume fraction and elasticity contrast be- 

tween phases, hexagonal and random composites were expected 

to have rather similar behavior because their microstructures be- 

come alike at long distance. It was effectively still observed at low 

fiber density and weak elasticity contrast, see Trias et al. (2006) . 

But for high volume fraction and high elasticity contrast, there is 

still a doubt that microstructure influences effective elasticity of 

composites. 

Present work is a comparison between effective elastic proper- 

ties of fiber reinforced composite respectively built with hexago- 

nal and random distribution of non overlapping fibers, for a large 

range of volume fraction P of fibers and elasticity contrast c . The 

homogenized effective transverse elastic properties of these com- 

posites were provided by finite element simulations followed by 

a volume averaging of local properties. Results will be compared 

to few analytical constitutive equations for elasticity of composite 

provided by Hashin (1962), Hashin and Shtrikman (1963), Chris- 

tensen and Lo (1979) and Hervé and Zaoui (1995) . 

2. Morphology description and finite element meshes 

2.1. Microstructure generating 

The composite under consideration were all reinforced with 

cylindrical fibers of same diameters. Apart from volume fraction 

and elasticity contrast, the only difference between samples stud- 

ied was the fiber transverse distribution which could be dis- 

tributed randomly or periodically along a hexagonal frame. 

Determination of homogenized effective transverse elastic prop- 

erties of these composites requires samples large enough to reach 

a representative elementary volume (RVE) and so to ensure sta- 

tistical homogeneity. Due to its periodicity, the RVE in hexagonal 

situation is reduced to a hexagonal cell surrounding a single fiber. 

The unit cell is characterized by L and h dimensions and by the 

radius R f of fiber with an associated frame of reference where the 

transverse plane is ( x 2 x 3 )as shown on Fig. 1. 

For random samples, the RVEs have to ensure that the apparent 

overall elasticity moduli were independent of the boundary condi- 

tions. According to Hill (1963) , the RVE must contains a sufficient 

number of fibers and as it was pointed out by Kanit et al. (2003) , it 

must have a sufficiently large size with regard to fiber diameters. 

For higher volume fractions, 500 fibers were insufficient to cap- 

ture the localized behavior and the associated boundary layer had 

a noticeable effect. An ensemble averaging on 10 differents sam- 

ples was necessary to reach convergence of the overall elasticity 

moduli. Examples of random samples are sketched on Fig. 1. 

For hexagonal samples, the range of fiber volume fraction was 

from P = 0 to critical volume fraction P crit = 

√ 

3 π/ 2 = 0 . 907 that 

corresponds to h = R f , whereas for random samples volume frac- 

ton did not exceed the jamming limit P = 0 . 65 . 

2.2. Meshing 

Except for the hexagonal cell, meshes were provided by su- 

perposition of finite elements square grids on microstructure im- 

ages using multi-phase elements technique. Then elastic proper- 

ties of the phases were associated to each integration point. This 

technique initially developed by Lippmann et al. (1997) was then 

used by El Moumen et al. (2013) and El Moumen et al. (2014) . 

For hexagonal unit cells, an example of used mesh is presented on 

Fig. 2 as well as its deformation under a simple shear. 

In order to ensure accurate results, even in high stress gradi- 

ents situations, the finite element mesh must be fine enough to 

avoid dependence of results with mesh scales. Different meshes 

were tested with regard to mesh densities. Fig. 3 presents results 

of convergence for random and hexagonal samples with volume 

fraction P = 0 . 51 . 

Of course the convergence was easier for the hexagonal config- 

uration in which a RVE is reduced to a single cell. In both config- 

urations the final mesh was fined enough to represent accurately 

the geometry of inclusions. 

2.3. Linear elasticity and applied strain 

For transverse isotropic problems, in the case of two phases, 

fibers f in a matrix m , the plane bulk modulus k m 

and k f and the 

plane shear modulus μm 

and μf of the matrix and fibers are re- 

lated to the Young’s moduli E m 

and E f and Poisson’s ratios νm 

and 

ν f as follows, 

k i = 

E i 
2 ( 1 + νi ) ( 1 − 2 νi ) 

, μi = 

E i 
2 ( 1 + νi ) 

, i = m, f (2) 

Both transverse effective bulk k ∗ and shear μ∗ moduli were cal- 

culated by solving two fundamental boundary value problems with 

imposed strain. The macroscopic imposed strain tensors ˜ E were 

given respectively by: 

˜ E k = 

(
1 0 

0 1 

)
and 

˜ E μ = 

(
0 

1 
2 

1 
2 

0 

)
(3) 

Then macroscopic plane bulk modulus k ∗ and shear modulus μ∗

are computed as: 

k ∗ = 〈 ̃  σ 〉 : ˜ E k = 

1 

4 

[ trace (< σ > )] and μ∗ = 〈 ̃  σ 〉 : ˜ E μ = 〈 σ12 〉 (4) 
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