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a b s t r a c t 

Governing equations are reported for the kinetics of swelling of neutral gels subjected to finite deforma- 

tions. Transport of solvent through a polymer network is described by the nonlinear diffusion equation 

with an equivalent diffusivity strongly affected by volume fraction of the solid phase. Material constants 

are determined by fitting observations in water uptake tests on NIPA, AAm and gelatin gels (taken from 

the literature) and HEMA gels (reported in this study) under unconstrained (spherical particles) and con- 

strained (free-standing films and thin films attached to rigid substrates) swelling. Good agreement is 

demonstrated between the experimental swelling diagrams and results of simulation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Hydrogels are three-dimensional networks of polymer chains 

connected by chemical and physical cross-links. Being immersed 

into water, a gel swells retaining structural integrity and the abil- 

ity to withstand large deformations. The mechanical response of 

gels under swelling has recently attracted substantial attention as 

these materials demonstrate potential for a wide range of “smart”

applications including biomedical devices, drug delivery carriers, 

scaffolds f or tissue engineering, sensors, and soft actuators ( Stuart 

et al., 2010; Koetting et al., 2015 ). 

Studies on transient swelling of gels were initiated by Tanaka 

and Fillmore (1979) , who investigated the kinetics of water uptake 

by a spherical gel particle. Li and Tanaka (1990) have shown that 

the kinetics of swelling is strongly affected by shape of a speci- 

men: although the equilibrium degrees of swelling for a spheri- 

cal particle and a thin disk coincide, the time needed for the disk 

to reach its equilibrium state exceeds the equilibration time for 

the spherical particle by an order of magnitude. A pronounced in- 

fluence of geometrical constraints on water uptake by gels was 

demonstrated by ( Yoon et al., 2010 ). Comparison of swelling pro- 

cesses for a free-standing layer and the same layer attached to a 

rigid substrate reveals that the presence of constraints results in 

a noticeable (by twice) growth of the equilibrium thickness and a 

strong (by several times) increase in time necessary to reach the 

equilibrium state. Transport of solvent molecules through a gel un- 

der constrained swelling–shrinking was studied in Liu et al. (2013) , 

where it is shown that the rate of permeation increases substan- 

tially with degree of swelling. 
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The first model for the kinetics of water uptake by a spherical 

gel particle was developed by Tanaka and Fillmore (1979) based on 

a number of simplifications. This model was elaborated in Peters 

and Candau (1986) , where the effect of shear modulus of the poly- 

mer network on transport of water molecules was taken into ac- 

count. The Tanaka–Fillmore model was generalized for the analysis 

of swelling of non-spherical gels by Barriere and Leibler (2003); 

Yamaue and Doi (20 04,20 05) , see Doi (20 09) for a review. In these 

models, transport of solvent under swelling (a slow flow of water 

through a polymer network) is presumed to be governed by the 

equation 

ζ ( v w 

− v n ) = −φw 

∇ �, (1) 

where v w 

, v n are velocity vectors for water and the network, �

stands for osmotic pressure, ∇ is the gradient operator, φw 

is vol- 

ume fraction of water, and ζ is a coefficient of friction between 

water molecules and segments of chains. Eq. (1) expresses the bal- 

ance between the drag force acting on solvent molecules and the 

gradient of osmotic pressure applied to the fluid phase. Combina- 

tion of Eq. (1) with the equilibrium equation for stresses in the 

network and the molecular incompressibility condition results in 

a diffusion equation with an equivalent coefficient of diffusion in- 

versely proportional to ζ . An advantage of this approach (the so- 

called linear theory of poroelasticity) is that it describes adequately 

the kinetics of water uptake under unconstrained and constrained 

swelling, and its conclusions (the time necessary for equilibration 

is inversely proportional to the square of the characteristic size of 

a sample) are confirmed experimentally ( Peters and Candau, 1986; 

Suzuki and Hara, 2001 ). Two shortcomings of the linear theory of 

poroelasticity are to be mentioned ( Yoon et al., 2010; Quesada- 

Perez et al., 2011; Bouklas and Huang, 2012 ): (i) it is confined 

to the analysis of swelling within the framework of small strains, 
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while water uptake by a gel is accompanied by finite deforma- 

tions, and (ii) the model does not involve the Flory–Huggins pa- 

rameter, which means that it disregards interactions between wa- 

ter molecules and hydrophilic/hydrophobic segments of chains. 

Several attempts have been undertaken to develop a concept 

of finite poroelasticity based on the mixing theory for interacting 

continua ( Green and Adkins, 1964; Crochet and Naghdi, 1966; Shi 

et al., 1981; Zhang and Calderer, 2008; Baek and Pence, 2011 ) and 

the theory of fluid transport through porous media ( Bennethum 

and Cushman, 1996; Singh et al., 2003; Weinstein and Bennethum, 

20 06 ), see Rajagopal (20 03) for review. To the best of our knowl- 

edge, none of these models has been verified by comparison with 

experimental data in swelling tests on gels. 

Another approach to the description of swelling of hydrogels is 

grounded on treatment of transport of solvent as diffusion of wa- 

ter molecules through a gel and application of the Flory theory 

of swelling ( Flory, 1953 ). A constitutive framework for the anal- 

ysis of transient water uptake at finite deformations was devel- 

oped by Hong et al. (2008); Duda et al. (2010); Chester and Anand 

(2010); Drozdov and Christiansen (2013a); Lucantonio et al. (2013) , 

to mention a few. An advantage of this concept is that constitutive 

equations involve a small number of adjustable parameters, which 

allows results of simulation to be compared with experimental 

data. Its shortcoming is that the diffusivity of water molecules can- 

not be treated as a constant: observations in water uptake tests re- 

veal that the model underestimates strongly (by an order of mag- 

nitude) degree of swelling when the maximum diffusivity of water 

molecules (the coefficient of self-diffusion) is used in calculations 

( Engelsberg and Barros, 2013 ). This requires an extra equation to 

be introduced that describes an increase in diffusivity D with con- 

centration of water molecules c . Conventionally, D is presumed to 

be proportional to c ( Lucantonio et al., 2013 ) or to c n with n treated 

as an adjustable parameter ( Baek and Srinivasa, 2004; Duda et al., 

2010; Chester and Anand, 2010 ), see Amsden (1998) and Masaro 

and Zhu (1999) for a discussion of phenomenological relations be- 

tween D and c . Although these relations lead to reasonable quali- 

tative predictions, they have not yet been validated quantitatively 

by comparison with experimental data. 

The objective of this study is (i) to establish correlation between 

the flux of water molecules in the diffusion concept for solvent 

transport and friction of water molecules and segments of chains 

in the concept of linear poroelasticity, (ii) to derive an expres- 

sion for diffusivity that is grounded on experimental data for the 

growth of molecular friction with volume fraction of polymer net- 

work, and (iii) to validate this expression by comparison of results 

of simulation with observations in swelling tests. 

The exposition is organized as follows. Governing equations for 

the elastic response of a gel and transport of water molecules are 

discussed in Section 2 . These relations are applied to the analy- 

sis of swelling-induced deformation of a free-standing film and a 

film attached to a substrate in Section 3 . Unconstrained swelling 

of spherical particles is analyzed in Section 4 . Experimental data 

in mechanical tests (tension with a constant strain rate, relaxation, 

and cyclic loading of swollen specimens) and swelling tests on 

HEMA gels with two mass fractions on monomers in pre-gel so- 

lutions are reported in Section 5 , where the observations are ap- 

proximated by the model. Concluding remarks are formulated in 

Section 6 . 

2. Governing equations 

A gel is treated as a two-phase medium composed of solid (a 

polymer network) and fluid (water) constituents. The solid and 

fluid phases are modeled as immiscible (mass exchange between 

the phases is disregarded) inter-penetrating continua (any elemen- 

tary volume contains both phases). 

Deformation of a gel coincides with that of its polymer net- 

work. It is convenient to introduce a special state of an unde- 

formed dry gel. This state will be called the initial state in what 

follows (the name is used by tradition, it is not presumed that a gel 

occupies this state at some “initial” instant). Transformation of the 

initial state into the actual state is described by the deformation 

gradient F . Under some experimental programs, the initial state 

is real (for example, when an as-prepared gel is dried, and the 

dry sample is subjected to water uptake). Under other programs, 

this state is fictitious and it is not realized in tests (for example 

when an as-prepared gel is directly immersed into a water bath 

for swelling). 

Denote by C concentration of water molecules (number of 

molecules per unit volume in the initial state). We adopt the 

molecular incompressibility condition 

J = 1 + Cv , J = det F , (2) 

where v stands for the characteristic volume of a water molecule. 

According to Eq. (2) , volume deformation of a gel is driven by 

changes in concentration of water only. Concentration of water 

molecules per unit volume in the actual configuration reads 

c = 

C 

J 
. (3) 

The reference state of the polymer network (in which stresses 

in chain vanish) coincides with its as-prepared state (where cross- 

linking polymerization of monomers is performed), but it can dif- 

fer from the initial state. Transformation of the initial configuration 

into the reference configuration is described by the deformation 

gradient 

f = f 
1 
3 I , (4) 

where f is the coefficient of inflation under transition from the dry 

state to the as-prepared state, and I stands for the unit tensor. 

According to the multiplicative decomposition formula, the de- 

formation gradient F for transition from the initial configuration to 

the actual configuration reads 

F = F e · f , (5) 

where F e denotes the deformation gradient for elastic deformation, 

and the dot stands for inner product. Combination of Eqs. (4) and 

(5) implies that 

F = f 
1 
3 F e . (6) 

The Cauchy–Green tensors for elastic deformation are given by 

B e = F e · F � e , C e = F � e · F e , (7) 

where � stands for transpose. These tensors are connected with 

the Cauchy–Green tensors for macro-deformation 

B = F · F � , C = F � · F (8) 

by the formulas 

B e = f −
2 
3 B , C e = f −

2 
3 C . (9) 

Transport of water molecules is modeled as its diffusion 

through the polymer network governed by the equation 

j = − Dc 

k B T 
∇ μ, (10) 

where j and ∇ are the flux vector and the gradient operator 

in the actual configuration, μ is the chemical potential of wa- 

ter molecules, D stands for diffusivity, k B is Boltzmann’s constant, 

and T denotes absolute temperature. It follows from Eqs. (2) , (3), 

(10) that 

j 0 = − DC 

k B T 
F −1 · ∇ 0 μ · F −1 , (11) 
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