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a b s t r a c t

In this work, the quality of resistance spot welding (RSW) joints of 304 austenitic stainless steel (SS) is
assessed from its tensile shear load bearing capacity (TSLBC). A predictive model using a polynomial
expansion of the relevant welding parameters, i.e. welding current (WC), welding time (WT) and elec-
trode force (EF) and elastic net regularization is proposed. The predictive power of the elastic net ap-
proach has been compared to artificial neural networks (ANNs), previously used to predict TSLBC, and
smoothing splines in the framework of a generalized additive model. The results show that the predictive
and classification error of the elastic net model are statistically comparable to benchmarks of the best
pattern recognition tools whereas it overcomes correlation problems and performs variable selection at
the same time, resulting in a simpler and more interpretable model. These features make the elastic net
model amenable to be used in the design of welding conditions and in the control of manufacturing
processes.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Resistance Spot Welding (RSW) is, according to Becker et al. [1],
one of the primary methods to join sheet metals for automotive
components due to the fact that, as indicated by Khodabakhshi
et al. [2], it has the highest throughput. In addition to the auto-
motive industry, RSW of stainless steel (SS) sheets is also widely
used, as pointed out by Kianersi at al. [3], in transportation vessels,
home and office items, kitchen furniture and utensils and building
applications. Feng et al. [4] stated that 4000–6000 RSW joints are
used in each vehicle; as emphasised by Martín et al. [5], such a
large number of RSW joints makes attractive the use of tools
capable of reliably assessing the quality of RSW joints from its
welding parameters that, thus, allow, as mentioned by Pereda at
al. [6]: (i) warning in real time about potentially detrimental drifts
in the RSW process; and (ii) assisting directly in quality control of
the RSW process, reducing post-welding testing.

Özyürek [7] indicated that structures employing RSW joints are
usually designed so that these joints are loaded in shear when the
parts are exposed to tension or compression loading. Zhou et al.
[8] reported that static tensile shear test is the most common la-
boratory test used in the determination of weld strength because
of its simplicity. Thus, in the present work, the quality of the RSW
joints is assessed from its tensile shear load bearing capacity
(TSLBC), which is the peak load value obtained during the tensile
shear test. Hasanbaşoğlu and Kaçar [9] and Kong et al. [10] agreed
that the most important factor affecting TSLBC is the size of weld
nugget, which, as explained by Raoelison et al. [11], is formed from
the solidification of the molten metal after a heating by Joule
effect.

Some previous works have already developed tools for asses-
sing the effect of RSW parameters on welding quality. Identifying
the most appropriate approach to build a predictive model is a
challenging task. Wolpert [12] showed that there is no learning
algorithm better than all the others on all the contexts. Conse-
quently, it is necessary to run computational experiments in order
to find out which are the techniques with the best performance for
the particular case under consideration. Martín et al. [13] created a
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tool based on ANNs for the classification of ultrasonic oscillograms
obtained from RSW joints. Li [14] carried out a fault diagnosis
method in manufacturing processes using a functional regression
approach. Moshayedi and Sattari-Far [15] proposed a finite ele-
ment model to investigate the distribution of temperature and
nugget formation during RSW process, as well as to study the ef-
fect of welding current (WC) and welding time (WT) on weld
nugget size. Ma and Murakawa [16] studied the weld nugget for-
mation process by using a finite element model which considered
the coupling of the electrical field, thermal field and mechanical
field during RSW process. Han et al. [17] used statistical models to
study several forms of estimating the mechanical strength of RSW
joints. Luo et al. [18] monitored in real-time the change of WC and
electrode voltage in the secondary circuit and, thus, the dynamic
resistance across electrodes was used to characterize the weld
nugget growth. Martín et al. [19] developed a model based on
artificial neural networks (ANNs) to predict the TSLBC of RSW
joints from WT, WC and electrode force (EF) but with the draw-
back that ANNs are “black boxes”, i.e. they lack explanatory power.
Therefore, as pointed out by Martín et al. [20], the underlying
knowledge captured by the network during its training is not
transparent to the user and, consequently, ANNs do not offer any
interpretability of the results.

Depending on the purpose of the model, this issue can be re-
levant for model selection. Predictive accuracy is a common cri-
terion for selecting a model. However, as pointed out by several
authors [21,22], model simplicity and interpretability make it
significantly easier to move from pattern recognition to knowledge
extraction, that may be more useful to define, control and optimize
industrial processes. In these cases, decision tools are more likely
to be accepted if the results can be understood and explained [23],
which means that among different models with predictive accu-
racy rates not statistically different in terms of a given significance,
the simpler and more interpretable model will be preferred.

Unlike ANNs, regression techniques do offer interpretability of
the results. Cho and Rhee [24] proposed simple linear and non-
linear regression models to estimate weld strength and nugget
diameter of RSW joints of low-carbon steel sheets, comparing the
obtained results with those of ANNs. They found better prediction
accuracy for ANNs.

A common approach to improve the performance of linear re-
gression approaches capturing non-linear effects consists on ob-
taining extra regressors from the initial predictors, for instance, by
using polynomial expansions. However, this procedure is not
without its drawbacks. Predictors obtained this way are very cor-
related, the complexity and interpretability of the model increases,
and there is an important risk of overfitting.

The elastic net regularization method proposed by Zou and
Hastie [25] is used in this work to simultaneously obtain an in-
terpretable and accurate predictive model. This approach produces
simple and interpretable models while maintaining a good per-
formance (even in the presence of several highly correlated vari-
ables), by means of reducing the number of predictors, identifying
the most important ones and shrinking coefficients. In the present
study, different polynomial expansions are implemented and
compared to the performance of ANNs, previously used for this
problem, and with smoothing splines, a very flexible, although not
interpretable, regression approach. The differences among the
results were found not statistically significant. The simple, accu-
rate and interpretable regression model obtained by applying
elastic net regularization makes easier the design and optimiza-
tion of the welding operation conditions and the control of the
manufacturing process while its predictive accuracy is statistically
comparable to that of the black box techniques. Additionally, the
obtained model was analyzed as a binary quality classification tool.
Again, the performance of the model used as a classifier is

competitive compared to the best welding pattern recognition
algorithms found for welding quality control.

The structure of the paper is as follows: First of all, the ex-
perimental procedure is described. Initially, the composition and
material properties are analyzed in detail. Then, a description of
the welding conditions as well as an explanation of the test se-
lected to assess the quality of each spot is given. The next section
presents the different data analysis methods studied, focusing at
first on theoretical aspects of the different techniques and on the
framework of comparison of all of them. Afterwards, the results
and discussion are provided for both prediction and classification.
The last section is devoted to the conclusions.

2. Experimental procedure

2.1. Materials and equipment

The chemical composition and the mechanical properties of the
AISI 304 austenitic SS sheets welded by RSW are, respectively,
shown in Tables 1 and 2. The sheet thickness was 0.8 mm.

The AISI 304 austenitic SS sheets were welded with a single-
phase alternating current (AC) 50 Hz equipment by using water-
cooled truncated cone RWMA Group A Class 2 electrodes with
16 mm body diameter and 4.5 mm face diameter.

2.2. Welding of the tensile shear test specimens

The controlled parameters in the RSW process were: (i) WT
that varied from 12 to 2 cycles, with a 1 cycle step decrease; (ii)
WC that varied approximately from 6.5 to 1.5 kA RMS with a
0.5 kA RMS step decrease; and (iii) EF that took only two values:
1000 and 1500 N. These three parameters are, as stated by Aslanlar
[26], the most important welding parameters in RSW.

Thus, there were 242, i.e. 11�11�2, different welding condi-
tions and a tensile shear test specimen was spot welded for each of
these 242 welding conditions. The tensile shear test specimens
were prepared according to [27] (see Martín et al. [19] for more
details).

The weld nugget of the RSW joint is a cast dendritic micro-
structure with coarser grains than the polygonal austenitic grains
of the adjacent metal, as shown in Fig. 1.

2.3. Quality assessment from TSLBC values

A TSLBC value was obtained from each of the 242 tensile shear
tests that were performed at a crosshead speed of 2 mm/min,
which, according to Marashi et al. [29], allows to consider the test
as static.

The minimum acceptable TSLBC value was set at 5.93 kN and,
therefore, the RSW joints whose TSLBC value was: (i) equal to or
greater than 5.93 kN, were considered acceptable; (ii) less than
5.93 kN, were considered unacceptable. This criterion was based
on the weld nugget diameter recommended by JIS Z 3140 [30]:

≥ ( )d t5 1

where d is the weld nugget diameter and t is the sheet thickness;

Table 1
Chemical composition of the AISI 304 austenitic SS sheets (wt%).

C Cr Ni Si Mn Mo Al Co

0.08 18.03 8.74 0.426 1.153 0.36 0.003 0.17
Cu Nb Ti V W S P Fe
0.39 0.02 0.004 0.05 0.03 0.002 0.019 Bal.
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