
Journal of the Mechanics and Physics of Solids

55 (2007) 1993–2006

Three-dimensional solutions for general anisotropy
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Abstract

The Stroh formalism is extended to provide a new class of three-dimensional solutions for the

generally anisotropic elastic material that have polynomial dependence on x3, but which have quite

general form in x1; x2. The solutions are obtained by a sequence of partial integrations with respect to

x3, starting from Stroh’s two-dimensional solution. At each stage, certain special functions have to be

introduced in order to satisfy the equilibrium equation. The method provides a general analytical

technique for the solution of the problem of the prismatic bar with tractions or displacements

prescribed on its lateral surfaces. It also provides a particularly efficient solution for three-

dimensional boundary-value problems for the half-space. The method is illustrated by the example of

a half-space loaded by a linearly varying line force.
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1. Introduction

The constitutive law for a generally anisotropic material involves 21 independent elastic
constants. Methods are well established for the solution of such problems for cases where
the stress and displacement fields depend on only two of the three spatial coordinates
x1;x2;x3. Lekhnitskii (1963) starts from expressions for the stresses in terms of stress
functions that satisfy equilibrium and shows that the compatibility condition can then be
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decomposed into six first order operators. Alternatively, Stroh (1958, 1962) shows that
particular solutions can be found in which the displacement vector has the same direction
at all points and a magnitude that is a function of a certain complex combination of x1; x2.
The general solution is then written as a sum of these solutions. (For a detailed exposition
of Stroh’s solution including numerous examples, see Ting, 1996.) Both the Stroh and
Lekhnitskii methods can be regarded as emanating from appropriate linear transforma-
tions of the in-plane coordinates x1; x2 and require that these transformations be distinct.
For example, if two of Lekhnitskii’s first order operators or two of Stroh’s combinations of
x1; x2 should be identical, special methods are necessary for the solution. This condition
arises only for certain special combinations of elastic constants (including of course the
case of isotropy) and will not be considered in the present paper.
Very few solutions exist for problems of general anisotropy when the stresses depend on

all three coordinates. Published solutions, such as those for a concentrated point force or
dislocation in an infinite body or a concentrated force on the surface of a half-space are
generally obtained using transform methods, such that the problem in the transform
domain is two-dimensional and can therefore be treated using the Stroh or Lekhnitskii
formalism (Sveklo, 1964; Willis, 1966; Ting, 2006; Wu, 1998). This contrasts with isotropic
elasticity, where (for example) general solutions can be expressed in terms of three-
dimensional harmonic functions using the Papkovitch–Neuber formulation (Barber, 2002).
Barber (2006a) has shown how certain three-dimensional isotropic solutions can be derived
from their two-dimensional counterparts by successive partial integrations in the x3-
direction. This leads to a general solution of the problem of an isotropic prismatic bar
loaded on its lateral surfaces, provided only that these loads can be expressed as finite
power series in x3. At each stage in the integration process, a two-dimensional problem is
solved to ensure that the lowest order terms in the solution satisfy: (i) the equations of
elasticity and (ii) the boundary conditions. The hierarchical structure underlying this
procedure was first enunciated by Ies-an (1986) and has also been applied by other
authors in both analytical and numerical formulations (Ladevèze et al., 2004; Huang and
Dong, 2001).
An essentially similar procedure can be applied to problems in general anisotropy (Rand

and Rovenski, 2005). However, in the isotropic case, the equations of elasticity can be
reduced to the condition that the Papkovitch–Neuber potentials satisfy Laplace’s equation
and the development of partial integrals satisfying this condition is a routine problem in
potential theory. For the anisotropic case, this strategy is no longer available, except for
certain special cases such as that of transverse isotropy.
The problem of determining an appropriate partial integral can be reduced to a sequence

of two-dimensional body force problems (Barber, 2006b), which in turn could be solved by
convolution on the known line force solution. However, this procedure is extremely
cumbersome in practice. In the present paper, we shall extend the classical Stroh formalism
for two-dimensional general anisotropy to stress and displacement fields with polynomial
dependence on the third coordinate x3. In particular, we shall show that the general
solution for a stress field with polynomial dependence on x3 can be written as a series
involving powers of x2;x3 multiplying arbitrary functions of x1 þ px2, where p is one of the
Stroh eigenvalues and we shall develop a set of recurrence relations for determining the
coefficients in this series that depend only on the elastic constants and not on the particular
boundary-value problem. The method is illustrated with the problem of a half-space
loaded by a linearly-varying line load.
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