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a b s t r a c t

In this paper, a numerical homogenization technique is used to estimate the effective thermal

conductivity of random two-dimensional two-phase heterogeneous materials. The thermal

computational leads essentially bring out the effect of the voids/inclusions morphology on

the effective physical properties. This is achieved using two different heterogeneous mate-

rials: microstructure 1 with non-overlapping spherical pores and microstructure 2 with non

overlapping spherical rigid inclusions taking into account five different volume fractions from

each case. The notion of the representative volume element is introduced for numerical sim-

ulations using periodic boundary conditions and uniform gradient of temperature conditions.

The obtained effective material properties on the representative microstructures are com-

pared with different analytical models as: series model, parallel model, effective medium

theory and Maxwell models, for different morphologies of rigid inclusions and voids. This

paper compares the performance of several classical effective medium approximations. Fi-

nally, an analytical expression developing the Maxwell model is proposed to estimate the

effective thermal conductivity of heterogeneous materials taking into account the inclusion

morphology.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Effective Thermal Conductivity (ETC) of two-phase

materials (matrix and inclusions) is one of the most im-

portant quantities characterizing energy transport in a vast

range of industrial and engineering applications. Lots of in-

vestigations have been on the estimation of the ETC of two-

phase materials, Whitaker (1999) and Wang and Pan (2008).

These present methods are divided into the analytical models

and the numerical simulations, Coquard and Baillis (2009).

The analytical models of Maxwell (1873) and Othuman

and Wang (2011), were generally based on a geometrical
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simplification of the microstructure and assumed regular

arrangements of the solid phase and the air phase, rather

than random mixtures. The numerical models were based

on mathematical computation of the microstructure describ-

ing the material phases, Veiseh et al. (2009). Another com-

mon way of estimating effective thermal conductivity for

heterogeneous materials with known microstructures is to

make rigorous numerical simulations using the finite differ-

ence method, the finite element method, or other numeri-

cal techniques, Divo et al. (2000), Rocha and Cruz (2001) and

Bolot et al. (2005).

For the analytical models, the early work of Maxwell

(1873) proposed a model for low dispersion of particles but

neglecting particle–particle interactions and can only be ap-

plied to structures with dilute particle dispersion. Several

attempts have been made to develop expressions for effec-

tive thermal conductivity of two-phase materials by various
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researchers such as: Rayleigh (1892), Wiener (1904), Lewis

and Nielsen (1970), Cunningham and Peddicord (1981),

Torquato (1985), Hadley (1986), Agari and Uno (1986), Misra

et al. (1994) and Singh and Kasana (2004). Rayleigh (1892)

pioneered a new formalism that furnishes an analytical so-

lution for a periodic array of spherical and cylindrical in-

clusions in a uniform matrix. This has proven a major im-

provement to Maxwell’s theory in predicting the ETC over a

large range of particle volume fractions up to close packing,

McPhedran and McKenzie (1978) and Mckenzie et al. (1978).

Rayleigh’s idea has been studied extensively by many authors

for decades. Wiener equations gave the maximum and min-

imum value by parallel and series models. Mckenzie et al.

(1978) extended Rayleigh’s method accounting for arbitrar-

ily high order multi-poles to calculate the thermal conductiv-

ity of simple body-centered and face-centered cubic lattices

of conductive spheres distributed in a matrix. Zimmerman

(1996) derived an analytical expression for the ETC of a two-

dimensional medium with randomly distributed and ran-

domly oriented elliptical inclusions using equivalent inclu-

sion based methods. Cheng and Torquato (1997) further gen-

eralized Rayleigh’s method by considering imperfect inter-

faces. Lewis and Nielsen (1970) reported a semi-empirical

model incorporating the effect of the shape and the ori-

entation of particles. Other approach for thermal conduc-

tivity predictions was initiated by Torquato (1985) for dis-

persed spherical and cylindrical particles. This approach also

takes into account the filler geometry and the statistical per-

turbation around each filler particle. Agari and Uno (1986)

have proposed another semi-empirical model which is based

on the argument that the enhanced thermal conductivity of

highly filled composites originates from forming conductive

chains of fillers. The self-consistent scheme (SCS) is another

method with general applicability. It considers a heteroge-

neous medium as being composed of a basic element embed-

ded in an equivalent homogeneous medium, with an effec-

tive conductivity whose value is determined through a linear

relationship between the effective heat flux and temperature

gradient effect in a similar manner to a homogeneous mate-

rial, Hashin (1968).

More recently, many works started to focus on the eval-

uation of the effective thermal conductivity, given its impor-

tance. For example, Yang et al. (2013) developed a general-

ized self consistent model to predict the effective thermal

conductivity of composites reinforced with multi-layered or-

thotropic fibers. A new analytical solution to predict the ETC

is developed by Akbari et al. (2013) for anisotropic materials

based on the self consistent field concept. Florez et al. (2013)

proposed a model to estimate the effective thermal conduc-

tivity of sintered porous media for heat pipes. The electri-

cal circuit analogy is employed to determine the heat leav-

ing the top and reaching the bottom of the cell. A new ef-

fective medium theory was proposed to model the thermal

conductivity of porous materials by Gong et al. (2014) us-

ing a simple algebraic expression for thermal conductivity

which can unifies the five basic structural models : paral-

lel, series, two forms of Maxwell’s and the effective medium

theory.

Nowadays, and with the development of technology, great

attention is paid to porous/composite materials for their

widespread industrial applications. Many numerical models

have been used for predicting their ETC, see Verma et al.

(1991), Veyret et al. (1993), Pabst and Gregorova (2006) and

Coquard and Baillis (2009). For example, Verma et al. (1991)

developed a porosity dependence correction term for spher-

ical and non-spherical particles. Veyret et al. (1993) used

a numerical approach to determine the ETC of the dipha-

sic medium. Calmidi and Mahajan (1999) presented a one-

dimensional heat conduction model, considering the porous

medium to be formed of two-dimensional array of hexagonal

cells. Rocha and Cruz (2001) calculated ETC of unidirectional

fibrous composite materials with an interfacial thermal re-

sistance between the continuous and dispersed components.

Bhattacharya et al. (2002) extended the analysis of Calmidi

and Mahajan, for metal foams of a complex array of intercon-

nected fibers with an irregular lump of metal at the intersec-

tion of two fibers. Pabst and Gregorova (2006) developed a

simple second-order expression for the porosity dependence

of thermal conductivity. Wang and Pan (2008) developed

a random generation-growth method to reproduce the mi-

crostructures of open-cell foam materials via computer mod-

eling and so on.

Most of the heat transfer works in the literature treats

equally all composites materials and porous media, indepen-

dently of their inclusion morphology. The main purpose of

this work is to bring out the influence of the inclusion mor-

phology on the effective thermal conductivity. The finite ele-

ment method (FEM) is used to evaluate the effective thermal

conductivity of random 2D, two phase heterogeneous mate-

rials. The first microstructure is a porous medium, and the

second is a non porous composite materials. The computa-

tional results are compared with different analytical mod-

els. The comparison clearly shows that the effect of the in-

clusions morphology on thermal conductivity is observed

only for porous medium, where the Maxwell’s model does

not provide an acceptable estimate except for circular voids.

In the case of composite materials, the Maxwell’s model is

still valid gives a very good estimation independently of the

inclusions morphology. Finally, an analytical formula taking

into account the inclusion morphology is proposed, to es-

timate the effective thermal conductivity of heterogeneous

materials.

2. Computational thermal homogenization

In this section, all elements and notations of numerical

homogenization necessary to determine the effective ther-

mal conductivity, using the methodology explained by Kanit

et al. (2003) based on the FEM, are carried out.

2.1. Microstructures generating and thermal conductivity of

phases

The morphology and technique of 2D microstructures

generating is presented in this section. For each studied mi-

crostructure, five configurations with different populations

of inclusion shapes are investigated. Each microstructure

contains one population of non-overlapped inclusions, ran-

domly distributed and randomly oriented in a continuous

matrix. It should be noted that there is no contact between

neighboring inclusions of the dispersed phase. The notations

used are P1 = P and P2 = 1 − P for the volume (surface in 2D)
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