
Author's Accepted Manuscript

Solid solution effects on hardness and strain rate sensitivity of nanocrystalline NiFe alloy

T. Guo, P. Huang, K.W. Xu, F. Wang, T.J. Lu

www.elsevier.com/locate/msea

PII: S0921-5093(16)31057-7

DOI: http://dx.doi.org/10.1016/j.msea.2016.08.120

Reference: MSA34078

To appear in: Materials Science & Engineering A

Received date: 22 July 2016 Revised date: 30 August 2016 Accepted date: 31 August 2016

Cite this article as: T. Guo, P. Huang, K.W. Xu, F. Wang and T.J. Lu, Solid solution effects on hardness and strain rate sensitivity of nanocrystalline NiF a 1 1 o y, *Materials Science & Engineering A* http://dx.doi.org/10.1016/j.msea.2016.08.120

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Solid solution effects on hardness and strain rate sensitivity of nanocrystalline NiFe alloy

T.Guo^a, P.Huang^{a,*}, K.W.Xu^a, F.Wang^{b,*}, T.J.Lu^{b,c}

^aState-Key Laboratory for Mechanical Behavior of Material,
Xi'an Jiaotong University, Xi'an 710049, China

^bStateKey Laboratory for Strength and Vibration of Mechanical Structures,
Xi'an Jiaotong University, Xi'an 710049, China

^cMOEKey Laboratory for Multifunctional Materials and Structures,
Xi'an Jiaotong University, Xi'an 710049, China

*Corresponding author: huangping@mail.xjtu.edu.cn; wangfei@mail.xjtu.edu.cn

Abstract

Solid solution effects on the hardness and strain rate sensitivity of nanocrystalline (NC) alloys were studied using electro-deposited Ni and NiFe thin films. Nanoindentation testing showed enlarged hardness with increasing Fe content, and grain size reduction was proposed to be the main mechanism underlying such strengthening. Strain rate sensitivity was found to be effectively reduced as Fe content was increased. Compared with pure NC Ni, this behavior was not expected as NC NiFe alloy possesses much smaller grain size, thus should exhibit higher strain rate sensitivity. As a consequence of grain boundary pinning via Fe solute, the changeover in dominant deformation mechanism from intergranular to intragranular plasticity was proposed to interpret the unexpected decrease in strain rate sensitivity with increasing Fe content.

Keywords: Solid solution; Hardness; Strain rate sensitivity; Nanocrystalline alloy; Nanoindentation

Download English Version:

https://daneshyari.com/en/article/7974853

Download Persian Version:

https://daneshyari.com/article/7974853

<u>Daneshyari.com</u>