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a b s t r a c t

In a number of materials, plasticity occurs along preferential directions or slip systems, while

other directions barely contribute to deformation. This can occur due to the specific crystalline

nature of the materials (e.g. in polymers) or due to the morphology of the crystalline material

itself, like in metal laminates. In the latter case, when the layers are very thin, the surrounding

material acts as a constraint and only preferential slip directions are activated. This observa-

tion suggests the reduction of the underlying full crystal plasticity model within those regions

to a more computationally efficient model which still retains the main deformation mecha-

nism, i.e. plasticity occuring along a few slip systems only. In this paper we propose such a

reduced crystal plasticity model in a finite deformation setting. In the limit of either no active

slip system or five linearly independent slip systems, the model reduces to isotropic plastic-

ity and standard crystal plasticity, respectively. The model is validated on a specific case, i.e.

lath martensite microstructures consisting of alternating crystalline layers of martensite and

austenite. The characteristic material behaviour (i.e. stress-strain response and slip activity on

the most active slip systems) is correctly reproduced by the reduced model at a significantly

lower computational cost compared to a fully resolved crystal plasticity model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A broad class of materials, like metals and semi-

crystalline polymers, exhibit plastic deformation along pref-

erential directions. Crystal plasticity modelling (e.g. Peirce

et al., 1982; Bronkhorst et al., 1992) is commonly used to de-

scribe the anisotropic plastic response of materials as a func-

tion of their crystalline structure. Most models have been ex-

tended to finite strains, and they are widely used to model

texture evolution, slip activity, roughening, phase transfor-

mation and other orientation dependent phenomena in crys-

talline materials (Roters et al., 2010).

In some cases, due to internal constraining conditions,

e.g. the low symmetry or specific structure of the crystals,
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deformation is governed by plastic slip on a limited num-

ber of slip systems. One example can be found in the field

of semi-crystalline polymers, where certain inextensible di-

rections are present due to the polymer chain orientations

resulting in crystals that lack five independent slip systems

(Parks and Ahzi, 1990; van Dommelen et al., 2000). For this

case, finite element formulations in the large deformation

setting have been proposed, which account for extra kine-

matical constraints besides incompressibility (e.g. van Dom-

melen et al., 2000), yet not in a reduced form as proposed

here.

Other examples can be found in high strength steels,

where some microstructures are characterised by alternate

layers of stiffer and softer phases. An example is lath marten-

site (Kim and Thomas, 1981; Morito et al., 2003), also within

the broader context of TRIP maraging steels (Raabe et al.,

2013; Wang et al., 2014) and quenched and partitioned (Q&P)

http://dx.doi.org/10.1016/j.mechmat.2015.09.011

0167-6636/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.mechmat.2015.09.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechmat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2015.09.011&domain=pdf
mailto:f.maresca@tue.nl
http://dx.doi.org/10.1016/j.mechmat.2015.09.011


F. Maresca et al. / Mechanics of Materials 92 (2016) 198–210 199

steels (De Moor et al., 2008), as well as bainite or nanobai-

nite (Bhadeshia, 2013). In these cases, the lamellar structure

consists of harder body centered cubic (BCC) crystals and

softer face centered cubic (FCC) austenite layers. The BCC-

FCC layers are generally related by an orientation relation-

ship, which forces the interface between the two phases to

be approximately parallel to three slip systems of the {111}γ
family. The specific crystallographic relationship and the con-

straining effect of the BCC phase on the austenite induces

that only 3 out of the 12 slip systems in the FCC phase carry

most of the plastic deformation (Maresca et al., 2014a); plas-

ticity along other directions still occurs, but to a minor extent

only.

In this paper, a reduced crystal plasticity model is pro-

posed to account for a limited number of active slip systems,

together with some plasticity along the other spatial direc-

tions. In this reduced model, the contribution of the most ac-

tive slip systems is explicitly accounted for within a standard

crystal plasticity format (e.g. Peirce et al., 1982; Bronkhorst

et al., 1992), while isotropic rate-dependent plasticity (e.g.

Belytschko et al., 2009) is used for the remaining spatial di-

rections. This considerably reduces the required computa-

tional effort compared to a fully resolved crystal plasticity

model. The proposed model is validated using lath marten-

site microstructures. It is shown that the combination of the

reduced crystal plasticity model for the austenite and

the isotropic plasticity model for the martensite preserves

the main physics of the full crystal plasticity model, while

yielding computational speed-ups up to a factor of 10.

The paper is organised as follows. First, in Section 2, the

reduced crystal plasticity model is introduced, followed by

Section 3 with the constitutive choices. Section 4 shows the

finite element implementation. In Section 5, the model is in-

corporated in a lamella homogenization scheme to mimic the

laminated FCC-BCC structure of lath martensite and the re-

sults are presented and confronted with the fully resolved

simulations from Maresca et al. (2014b), both in terms of ma-

terial response and computational performance. In Section 6,

the lamella model for the martensite with reduced descrip-

tion of the phases is applied in the context of multi-phase

(dual phase) steels, and validated against fully resolved sim-

ulations on the same microstructures. The paper ends with a

discussion and conclusions.

The following notations are used: a, b, C and D denote

scalars, vectors, second-order tensors and fourth-order ten-

sors, respectively. Symbol “ T ” denotes transposition. Sin-

gle and double contractions are denoted by “·” and “:”, re-

spectively, with (A · B)i j = AikBk j (sum on repeated indices)

and A : B = tr(A · B), “tr” being the trace operator. Tensor

(or dyadic) product between two vectors a and b is denoted

a⊗b. The symbol “×” indicates the cross product. The time

derivative of scalars and tensors is indicated by a superim-

posed dot, e.g. ȧ. The derivative of a second-order tensor A

with respect to a second-order tensor B is defined as ∂A
∂B

=
∂Ai j

∂Bhk
ei ⊗ e j ⊗ eh ⊗ ek.

2. Reduced crystal plasticity framework

2.1. Nomenclature

Table 1 summarizes the list of the main symbols intro-

duced in Section 2.

Table 1

List of the main symbols introduced in Section 2.

F Deformation gradient;

Fe Elastic part of the deformation gradient;

Fp Plastic part of the deformation gradient;

Br Reference configuration;

B0 Plastically deformed, intermediate configuration;

B Current configuration;

φ∗
e Pull-back operator;

φe
∗ Push-forward operator;

Ce Elastic Cauchy-Green tensor;

I Second order identity tensor;

I Fourth-order identity tensor;

g Metric tensor of the current configuration B;

L Velocity gradient;

Le Elastic part of the velocity gradient;

Lp Plastic part of the velocity gradient;

L̄p Pull-back of the plastic part of the velocity gradient to B0;

L̄p,γ “Slip” contribution to L̄p;

L̄p,ε “Isotropic” contribution to L̄p;

Pα
0 Schmid tensor in B0 of the αth slip system;

P0 Fourth order projection operator in B0;

C Fourth-order elasticity tensor;

τ Kirchhoff stress tensor;

S̄ Pull-back of τ to B0;

τα Resolved shear stress on the αth slip system;

σ eq Equivalent stress;

γα, γ̇α Plastic slip, plastic slip rate;

εeq, ε̇eq Equivalent plastic strain, equivalent plastic strain rate.

2.2. Kinematics

Consider a deformable body occupying configuration Br

in the reference state and configuration B in the current state.

The total deformation gradient tensor F describes the lin-

earized map between these two configurations.

The total deformation gradient tensor F can be multiplica-

tively split into an elastic Fe and plastic Fp contributions as

follows:

F = Fe · Fp . (1)

The multiplicative split introduces an intermediate configu-

ration B0 distorted by the plastic deformation only. The elas-

tic deformation, as well as rotations are included in Fe. Fig. 1

sketches the three configurations with the related quantities

that will be introduced in the following.

In the subsequent discussion, we will use the pull-back

and push-forward operations, indicated by φ∗
e and φe∗, re-

spectively, along the elastic part of the deformation, i.e. from

B to B0 and vice-versa.

We will make use of the metric tensor g of the cur-

rent configuration. The pull-back of the current configura-

tion metric to the intermediate configuration is the elas-

tic Cauchy-Green tensor Ce = φ∗
e g. Note that Ce = FT

e · Fe. For

the purpose of computation, it can be assumed g = I (Carte-

sian coordinates), where I is the second-order identity tensor.

However, in this section, we will consider the more general

case of curvilinear coordinates to better highlight the origin

of the proposed model equations. For a general derivation of

hyperelastic–plastic models in the finite deformation setting,

the reader is referred to e.g. (Simo et al., 1998; Belytschko

et al., 2009).

We define the velocity gradient in the current configura-

tion L and use the additive split into its elastic and plastic
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