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a b s t r a c t

In this paper, we present an analysis of the transverse cracking and interface failure process
induced in layered materials (such as composite laminates) subjected to tensile loading,
with a new level set based non-local modeling approach for damage growth (TLS: Thick
Level Set). In particular, a 2D finite element model is built to study damage in a
cross-ply laminate. The study aims at evaluating the capacity of the TLS method to predict
evolution of damage at the ply level, including initiation, propagation, merging of cracks or
delamination. We show how this numerical model is able to reproduce key features such as
crack spacing saturation and other experimental observations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The appearance and development of transverse cracks
in layered materials is an important problem in many
fields of engineering, for example in composite laminates
(Garret and Bailey, 1977; Highsmith and Reifsnider,
1982; Manders et al., 1983), thin-films (Thouless et al.,
1992), civil engineering (Hong et al., 1997), or geology
(Price, 1966). It is well established that in this configura-
tion of layered materials, cracks tend to self-organize, with
a spacing which is directly related to the relative thickness
of layers. Explanations for this phenomenon, based on
shielding effects, have been proposed on the basis of frac-
ture mechanics (e.g. Bai and Pollard (1999) and Bai et al.
(2000)). This type of analysis relies on the study of the
effect of discrete cracks placed in elastic layers, and
although it can explain why a given crack distribution is
optimal or natural in some way, it cannot provide details
on the process which would lead to this crack distribution.

Transverse microcracking and local delamination in
fiber-reinforced composite laminates have been studied
mainly within the framework of finite fracture mechanics.
Analytical approaches have been used for crack growth
with energetic criteria that have allowed the definition of
a large number of successful fracture models such as in
Dvorak and Laws (1987), and others (Hashin, 1996;
Nairn, 2000; Varna et al., 1999). Rebière and Gamby
(2004) recently proposed an analytical energetic criterion
for modeling crack initiation and propagation in the matrix
as well as delamination in cross-ply laminates.
Alternatively, numerical models have been proposed to
model matrix fracture, based on finite element approaches
combined to bulk damage (Berthelot et al., 1996) or cohe-
sive elements (Okabe et al., 2004). The meso-model devel-
oped by Ladevèze and Lubineau (2001) and Ladevèze et al.
(2006) predicts damage evolution directly at the ply level.
Due to the variability of local material properties within
the plies, the heterogeneity of mesoscopic structures must
be considered. Some authors introduced a statistical crite-
rion in strength like in Berthelot and Le Corre (2000), or a
statistical criterion in toughness as in Andersons et al.
(2008). Numerical studies of the propagation of debonding
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at the tip of transverse cracks were also treated by a vari-
ational approach to fracture (Baldelli et al., 2011).

Modeling the progressive degradation of materials from
an initial undamaged state to total failure is still a chal-
lenge in computational mechanics. Damage models can
be used to describe the initial degradation of mechanical
properties, while fracture mechanics is well adapted to
final stages leading to fracture. The Thick Level Set (TLS)
approach, proposed by Moës et al. (2011), allows for a
seamless transition between damage and fracture, while
providing the necessary regularization in presence of
softening.

In this paper, we present an analysis of the transverse
cracking and interface failure process induced in layered
materials (such as composite laminates) subjected to ten-
sile loading, using the TLS approach. The main aspects of
this method will be presented in Section 2. In Section 3, a
2D finite element model is built to study damage in a
cross-ply laminate. The study aims at evaluating the capac-
ity of the TLS method to predict evolution of damage at the
ply level, including initiation, propagation, merging of
cracks or delamination. For this, we will start from undam-
aged (virgin) material with small but random variations of
mechanical properties, and simulate the initiation and evo-
lution of cracks. In Section 4, we show how this numerical
model is able to reproduce key features such as crack spac-
ing saturation and other experimental observations. We
also study the effect of some algorithmic parameters
involved in the TLS method. The paper closes with some
conclusions and perspectives.

2. Thick Level Set (TLS) approach

2.1. Continuum damage

Our objective in this work is to study the development
of transverse cracks in layered materials, starting from a
virgin (crack-free) state. It is nowadays well established
that continuum damage models (CDM) are appropriate to
treat early stages of material degradation. Abundant liter-
ature on CDM is available, which analysis is nonetheless
beyond the scope of the present paper, and we will simply
refer the reader to Lemaître et al. (2009).

2.1.1. Local constitutive relations
We will work under assumptions of linearized kinemat-

ics, and consider a simple elastic-damage model described
by

r ¼ CðdÞ : e ð1Þ

where r is the Cauchy stress tensor, e the engineering
strain tensor, and CðdÞ a fourth-order elasticity tensor,
function of the scalar damage variable d 2 ½0;1�. The model
can alternatively be described in the framework of general-
ized standard materials (Halphen and Nguyen, 1975;
Germain et al., 1983), by defining the free energy potential,
a function of the material state fe; dg:

Wðe;dÞ ¼ 1
2
e : CðdÞ : e: ð2Þ

This potential in turn allows to define thermodynamical
forces conjugate to state variables e and d:

r ¼ @W
@e
ðe;dÞ ð3Þ

Y ¼ � @W
@d
ðe;dÞ ð4Þ

It is easily verified that (3) is equivalent to (1). Relation (4)
defines the energy release rate Y, thermodynamically con-
jugate to damage d. The equation describing the evolution
of damage is then obtained through the dissipation poten-
tial wðYÞ:
_d 2 @YwðYÞ ð5Þ

where @Yw denotes the sub-gradient of wðYÞ, a (potentially
non-regular) convex function of Y. Following standard
arguments, convexity of wðYÞ, combined to conditions
wð0Þ ¼ 0 and wðYÞP 08Y , ensures positivity of the
dissipation:

D ¼ Y _d P 0: ð6Þ

This formalism allows to simultaneously cover both
rate-independent and rate-dependent damage models.
Indeed, the rate-independent case corresponds to a lower
semi-continuous dissipation potential of the form:

wðYÞ ¼
0 if Y 6 Yc;

þ1 if Y > Yc

�
ð7Þ

and (5) is then equivalent to Karush–Kuhn–Tucker

conditions: _d P 0; Y � Yc 6 0; ðY � YcÞ _d ¼ 0. The rate-
dependent case corresponds to more regular functions
(e.g. power-law expressions of Y or Y � Yc). Finally, a dual
dissipation potential w� can be defined through a
Legendre–Fenchel transform:

w�ð _dÞ ¼ sup
Y

Y _d� wðYÞ
h i

and Y 2 @ _dw
�ð _dÞ ð8Þ

where convexity of w�ð _dÞ is guaranteed by properties of
Legendre transforms.

2.1.2. Boundary-value problem
The boundary-value problem at a given time t then con-

sists in the static mechanical balance equation

$ � rþ b ¼ 0 8x 2 X ð9Þ

together with boundary conditions

u ¼ �u 8x 2 @uX ð10aÞ
r � n ¼ �t 8x 2 @rX ð10bÞ

where @uX
S
@rX ¼ @X and @uX

T
@rX ¼ ;, and constitu-

tive Eqs. (3)–(5). Vectors b; �t, and �u are respectively
applied body force, applied surface traction, and imposed
displacement at time t.

Alternatively, the boundary value problem can be sta-
ted in variational form:

stat
_u

inf
_d

Z
X

_Wð$su;dÞþw�ð _dÞ
h i

dV �
Z

X
b � _udV �

Z
@Xr

�t � _udS

ð11Þ
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