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a b s t r a c t

Taylor principles indicate that the Taylor strain tensor is identical to the macroscopic strain tensor during
plastic deformation and prevails everywhere inside polycrystalline aggregates, in which real grain be-
haviors generally differ. These principles have been modified in many deformation models while con-
sidering strain and stress equilibria in local areas, e.g., grains, grain pairs or grain clusters. However, the
Taylor strain tensor is still valid in the surrounding matrix of local areas. In this paper, a reaction stress
model based on intergranular mechanical interactions is proposed for rolling deformation caused by
penetrating slips and additional local slips while keeping reaction shear stresses below certain top limits.
Both stress and strain equilibria are reached in entire rolling sheets in the model, and the same Taylor
texture is predicted without the Taylor strain tensor anywhere inside the polycrystalline matrix, re-
gardless if the isotropic matrix is rigid or elastic. Rolling-texture formation in experimental poly-
crystalline metals could be simulated based on the model if the relaxation effects of additional slips on
reducing the top limits of reaction shear stresses are included.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Cold rolling is a very important segment for texture formation
and evolution during sheet processing in metal industries. The
consequent recrystallization texture of sheet products after rolling
directly connects engineering properties with related anisotropy.
Therefore, corresponding theories for rolling-texture formation are
required to understand the law of rolling-texture evolution. Most
current crystallographic models simulating rolling textures in-
duced by homogeneous dislocation slips are mainly based on
Taylor principles [1], including different modifications [2–6]. The
original Taylor model assumes that the strain tensor describing the
plastic deformation of any given grain is homogenous inside that
grain and equal to the strain tensor of its surrounding matrix, as
well as to the macroscopic plastic strain tensor that can be iden-
tified as the Taylor strain tensor (TST). Evidently, no stress equili-
brium exists, except strain equilibrium among deformed grains
and their surrounding matrix in Taylor model, as well as in its
relaxed constraint modification [2,7].

One of the widely used modifications of Taylor model is the
viscoplastic self-consistent (VPSC) model with many different

variants [3]. In this model, each grain is treated as an ellipsoidal
viscoplastic inclusion embedded in a homogeneous effective ma-
trix, whose strain tensor is equal to TST. A number of slip systems
in each grain are activated differently, and the incompatible stress
tensor is managed to be reduced. The advanced lamel (ALAMEL)
model is another modification of Taylor theory, in which a large
number of neighboring grain pairs are embedded in the matrix [4].
Both stress and strain equilibria are established in the boundary
area between two grains of each grain pair [5]. In a similar way,
the grain-interaction (GIA) model treats a large number of grain
clusters embedded in the matrix [6]. Each cluster consists of eight
grains, between which both stress and strain tensors around the
boundary area inside clusters manage to reach a certain equili-
brium during deformation. VPSC, ALAMEL, and GIA enable sa-
tisfactory rolling-texture predictions that agree with those of ex-
perimental observations [5,8,9], whereas the strain tensor of ma-
trix around any deformed grain, grain pair, or grain cluster is ba-
sically considered to be equal to TST.

The plastic strain tensors of grains in real polycrystalline ag-
gregate generally deviate differently from the macroscopic plastic
strain tensor while keeping stress and strain equilibria every-
where. Therefore, the strain prescription of matrix around de-
formed grains based on TST is not completely appropriate.
Meanwhile, stress equilibria between matrix and grain pairs or
grain clusters have not yet been achieved satisfactorily [4,6].
Modified Taylor models demand certain computation time that
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needs to be reduced for industry applications, especially some very
complicated and time-consuming models [10–12], although solu-
tions for stress equilibrium at grain boundaries are found.

Slip systems during deformation are known to be activated in
multiple ways with different slip rates. The above-mentioned
models attempt to identify appropriate combinations of multiple
slips integrally while also considering stress and strain equilibria,
which highly complicates the simulation calculations. However,
these calculations could be largely simplified if a combination of
multiple slips is disassembled into many fine slip steps, in which
different step fractions of different slip systems represent their slip
rates. This consideration was successfully applied to simulate
simple tensile deformations based on intergranular reaction
stresses [13]. Accordingly, this work attempts to establish a simple
and time-saving model of rolling deformation based on more ra-
tional intergranular interactions, as well as stress and strain
equilibria, between deformed grains and their surrounding matrix
without TST prescription.

2. Stress tensor inducing grain deformation in rigid matrix
during rolling

The external stress tensor [sij] in the case of rolling deformation
is generally approximated by a biaxial plane stress state, whereas
hydrostatic pressure is subtracted. The tensor is expressed in a
simplified way as follows:
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where 1, 2, and 3 are the rolling direction (RD), transverse direc-
tion (TD), and normal direction (ND) of rolling sheet, respectively,
and sy is the yield stress of an entire rolling sheet or a grain
concerned. Obviously, the normal stress s22 in TD and all shear-
stress components σ

≠ij i j
are roughly zero.

Supposing that deformation of a free single crystal is conducted
using a slip system identified by a unit vector b ¼ (b1, b2, b3) in the
direction of Burgers vector and normal direction n ¼ (n1, n2, n3) of
the slip plane, then the plastic strain tensor [εij] induced by a slip
penetrating nonrigid grains is expressed in the rolling sample
coordinate, cf. Eq. (1), as follows:
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where δ is the relative displacement of the penetrating slip. The
normal strain component ε1140 and ε33o0 are valid under the
external stress tensor indicated by Eq. (1), whereas the absolute
value of ε22 is commonly very low.

The strain component values ε1140 and ε33o0 become true
after a tiny step of plastic rolling. However, the components of
plastic shear strain (Eq. (2)) in any deformed grain of a polycrystal
instead of in a free single crystal are commonly blocked by
neighboring grains and cannot be achieved freely. The block effect
can be expressed as a reaction stress (RS) tensor [σ ′ij] according to
Hooke's law [13]:
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where all neighboring grains are regarded as an absolute rigid
matrix (θ ¼ε11þε22þε33), E is Young's modulus, and ν is the
Poisson's ratio of deformed grains. This equation indicates that the
possible plastic shear strain components (Eq. (2)) are completely
suppressed. Such suppression induces elastic shear strains inside
the grain inversely as the slip penetrates while compensating for
strain incompatibility between the nonrigid grain and its rigid
surrounding matrix.

The plastic deformation of a grain in polycrystals proceeds
under both external stress tensor (Eq. (1)) and RS tensor (Eq. (3))
in the subsequent rolling step. The external normal stress com-
ponents sii (Eq. (1)) undergone by a grain prevail; the normal RS
components σ ′

ii in Eq. (3) merges approximately into these stress
components while the grain maintains its yield state during roll-
ing. Therefore, the stress combination [sij] acting on the deformed
grain according to Eq. (1)–(3) becomes

a.                            b.                            c.
Fig. 1. Deformed interstitial-free steel and corresponding analysis of slips observed in different grains (a. microstructure; b. penetrating slips in grain A induce additional
slips in grains B and C; and c. interaction of different slips in neighboring grains). Fine lines: penetrating slip traces; dashed lines: non-penetrating slip traces.
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