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a b s t r a c t

The objective of this paper is to perform numerical assessment of a micromechanical
model of porous metal plasticity developed previously by the authors. First, upper bound
estimates for the yield loci are computed using homogenization and limit analysis of a
spheroidal representative volume element containing a confocal spheroidal void, neglect-
ing elasticity. Unlike in the development of the analytical model, the computational limit
analysis is performed without recourse to approximations so that the obtained yield loci
are rigorous upper bounds for the true criterion. Next, the model’s macroscopic dilatancy
at incipient plastic flow is compared against that of the numerical limit analysis approach.
Finally, finite-element calculations, with elasticity included, are presented for transversely
isotropic porous unit-cells loaded axisymmetrically. The effective stress–strain response as
well as evolution of the unit-cell porosity and void aspect ratio are compared with
theoretical predictions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The primary mechanism of ductile fracture is the
growth and coalescence of micro-voids or blunted
micro-cracks. In metals, these nucleate from hard inclu-
sions and second phase particles (Argon et al., 1975), or
sometimes at slip- or twin-boundaries and intersections
(Kondori and Benzerga, 2014). Microvoid growth and
coalescence are natural outcomes in porous metal plas-
ticity (Benzerga, 2015); also see Benzerga and Leblond
(2010) for an extensive review. Earlier models were
isotropic and only accounted for void growth (Gurson,
1977; Rousselier, 1987) with subsequent extensions to
coalescence being heuristic (Tvergaard and Needleman,
1984). Later, porous metal plasticity models accounting
for anisotropy and coalescence have been developed with
increasing degree of accuracy, e.g., (Gologanu et al., 1993;

Benzerga and Besson, 2001; Madou and Leblond,
2012a,b; Benzerga and Leblond, 2014).

Of particular interest are models having a microme-
chanically-derived capability to couple void shape and
plastic anisotropy (Keralavarma and Benzerga, 2008;
Monchiet et al., 2008; Keralavarma and Benzerga, 2010).
Modeling void shape evolution is essential to various fun-
damental problems in ductile fracture mechanics such as:
(i) developing criteria for the onset of void coalescence
(Benzerga et al., 1999; Pardoen and Hutchinson, 2000;
Benzerga, 2002); (ii) accounting for damage and fracture
anisotropy (Benzerga et al., 2004); and (iii) understanding
damage accumulation under complex loading conditions,
for example void rotation in a shear field (Nielsen et al.,
2012; Tvergaard, 2014) (obviously, rotation of a void is
meaningful if the void has a non-spherical shape). On the
other hand, modeling plastic anisotropy is essential to a
host of engineering materials, notably aluminum alloys
and hexagonal close packed materials such as magnesium,
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titanium and zirconium alloys. What is of particular impor-
tance is that the net rate of void growth in an anisotropic
material can be virtually suppressed or enhanced, under
any stress state, depending on the degree of anisotropy
(Benzerga and Besson, 2001; Keralavarma et al., 2011).
This fact begins to be recognized in the mechanics lit-
erature but remains to be taken fully advantage of in
designing damage-tolerant, fracture-resistant materials.

The constitutive models of anisotropic porous metal
plasticity were developed based on nonlinear homogeniza-
tion combined with the theory of limit analysis. Their
derivation typically involves consideration of a hollow
spheroidal representative volume element (RVE) made of
a Hill orthotropic material and various kinematically
admissible trial velocity fields at the microscale
(Benzerga and Leblond, 2010). For instance, Monchiet
et al. (2008) developed a model based on consideration
of the velocity fields used by Gologanu et al. (1993),
Gologanu et al. (1994) in their earlier versions of the GLD
model, and Keralavarma and Benzerga (2008) developed
an improved solution using a broader space of velocity
fields (Lee and Mear, 1992) also used by Gologanu et al.
(1997) in their improved GLD model. The model is,
however, restricted to axisymmetric loadings and
microstructures for which the void axis is aligned with
one direction of material orthotropy. Later, Keralavarma
and Benzerga (2010) developed a generalized model
applicable to arbitrary loadings and void orientations.
This model thus constitutes a generalization of the GLD
model to plastically anisotropic matrices and also a gener-
alization of Benzerga and Besson’s (2001) model to spher-
oidal voids. Evolution equations were supplied for the void
volume fraction, void aspect ratio and void rotation. It is
worth noting that plastic potentials for ellipsoidal voids
in an isotropic matrix have been previously derived using
an alternate non-linear homogenization procedure by
Ponte Castañeda and Zaidman (1994) and later improved
by Danas and Ponte Castañeda (2009). However, neither
of these works considered the case of anisotropic matrices.
Within a similar variational framework Han et al. (2013)
and Paux et al. (2015) have recently proposed yield criteria
for porous single crystals. These models inherently account
for plastic anisotropy effects at the crystal level but only
for spherical voids. Other works have addressed the prob-
lem computationally. For example, Yerra et al. (2010)
investigated the effects of plastic flow anisotropy using a
crystal plasticity description of the matrix to study the
growth of spherical voids in single crystals. Interestingly,
they noted that when a Hill criterion is fit to the crystal
plasticity model their results can be rationalized for the
most part on the basis of the Benzerga–Besson model
(2001). More recently, Lebensohn et al. (2013) studied
the growth of initially spherical voids in a polycrystalline
matrix by means of a fast Fourier transform formulation.
When fully developed, such results will provide a basis
for assessing anisotropic porous metal plasticity models.
Also, crack-void interactions were investigated in textured
polycrystals (Sreeramulu et al., 2013). However, for these
more refined descriptions of matrix plasticity, closed form
yield criteria have not been developed, presumably due to
the analytical complexity of the homogenization problem.

The objective of the present paper is to perform a
detailed numerical assessment of the approximate analyti-
cal model of Keralavarma and Benzerga (2010). The model
considers aligned spheroidal voids in a Hill orthotropic
matrix. The assumption of a spheroidal void shape entails
some restrictions, although the problem is sufficiently gen-
eral for the purpose of illustrating coupled effects of void
shape and matrix anisotropy on ductile damage evolution.
A brief summary of the analytical model is presented in
Section 2 for ease of reference. The performance of the
model is assessed using two different approaches. In
Section 3, a numerical method is developed to compute
upper-bound yield loci for anisotropic materials subjected
to axisymmetric stress states following a limit analysis
procedure using a large number of trial velocity fields
derived from the incompressible axisymmetric velocity
fields proposed by Lee and Mear (1992). Due to limitations
of the trial velocity fields employed, tight upper bound loci
are only guaranteed in the case of fully axisymmetric
problems, even though rigorous bounds are obtained in
all cases. Recently, a finite-element based limit analysis
method has been proposed that obviates the need to
choose trial velocity fields a priori (Morin et al., 2014),
albeit at a higher computational cost. In Section 4, the ana-
lytical yield criterion is validated by comparison with these
numerically derived upper bound yield loci. Additional
results for the macroscopic dilatancy due to void growth
at incipient yielding, obtained from the normality property
of plastic flow, are also compared. In Section 5, the analy-
tical model is integrated for specified loading paths and
the evolution equations for the microstructural variables
are validated by comparing the model predictions with
finite-element predictions for the same using microme-
chanical unit-cells.

2. Model synopsis

In Keralavarma and Benzerga (2010), the framework of
Hill–Mandel homogenization (Hill, 1967; Mandel, 1964)
and limit-analysis was used to derive an approximate
analytical yield criterion for anisotropic porous materials,
containing spheroidal voids embedded in a Hill-type
orthotropic matrix (Hill, 1948). The kinematic approach
of homogenization was used, following previous works
on void shape effects (Gologanu et al., 1997) and material
anisotropy effects (Benzerga and Besson, 2001), wherein
the representative volume element is subjected to homo-
geneous deformation rate boundary conditions. The RVE
was chosen to consist of a thick spheroidal shell containing
a confocal spheroidal void, as illustrated in Fig. 1. Evolution
laws were also derived for the microstructural variables,
porosity, void aspect ratio and orientation. The main
results are summarized here for completeness.

2.1. Yield criterion

Following the Hill–Mandel homogenization approach,
the macroscopic or ‘average’ stress, R, and deformation
rate, D, for the RVE are given by

R ¼ hriX; D ¼ hdiX ð1Þ

S.M. Keralavarma, A.A. Benzerga / Mechanics of Materials 90 (2015) 212–228 213



Download English Version:

https://daneshyari.com/en/article/797527

Download Persian Version:

https://daneshyari.com/article/797527

Daneshyari.com

https://daneshyari.com/en/article/797527
https://daneshyari.com/article/797527
https://daneshyari.com

