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a b s t r a c t

Predictive microstructural models of poly-crystalline materials require a correct descrip-
tion of the mechanical behavior of internal boundaries, e.g. grain, phase and twin bound-
aries. Dislocations are the carriers of plastic deformation and the presence of internal
boundaries restricts their motion. Interactions between dislocations and the resistance to
their motion caused by the interfaces give rise to hardening and size effects, which should
therefore be considered. In this paper, a continuum dislocation transport model in single
slip is used to model a two-phase laminated microstructure containing (plastically) hard
and soft phases. The phase boundary constitutes an interface in the model. The transport
equations require continuity of the dislocation flux throughout the domain. Expressions
for the dislocation flux in the bulk as a function of the dislocation densities and their gra-
dients are readily available in the literature. However, the interface requires an additional
constitutive model for the dislocation flux passing through it. Such a model is derived here
from the interactions of infinite dislocation walls on both sides of the parallel boundary. A
qualitative analysis is performed to reveal the effect of interface, material and geometrical
parameters on the overall response of a two-phase laminate. The presence of the interface
in the two-phase laminate gives rise to the observed characteristic hardening of dual-phase
materials as well as to size effects.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanics of materials on smaller length scales
becomes increasingly important as a result of the intrinsic
microstructural size effects result from the ratio of differ-
ent microstructural length scales, e.g. Hall–Petch, Friedel
and Orowan effects (Sevillano et al., 2001; Geers et al.,
2006). In this case, classical continuum models describing
the material behavior fail to capture relevant mechanics
governing plastic behavior. Another aspect is that by alter-
ing the microstructure of materials their properties may be
influenced. Therefore, in order to derive predictive models

for these materials, relevant mechanics on the microstruc-
tural level should be included.

On the microstructural scale, the behavior of (collec-
tions of) dislocations dictates plastic behavior. The under-
standing and correct description of the dislocations,
including their interactions with interfaces, is therefore
key for predicting the resulting engineering properties
(Shen et al., 1988). When the motion of dislocations is
restricted, the material is unable to deform plastically,
thereby enhancing the strength of the material. Grain,
phase and twin boundaries are examples of interfaces
where dislocation motion is partially impeded. The pres-
ence of such interfaces explains experimentally observed
size effects (Lasalmonie and Strudel, 1986; Arzt, 1998;
Aldazabal and Sevillano, 2004; Hansen, 2004). They are
often induced by strain gradients due to the pile-up of dis-
locations against boundaries (Smyshlyaev and Fleck, 1996;

http://dx.doi.org/10.1016/j.mechmat.2015.04.007
0167-6636/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: m.dogge@m2i.nl (M.M.W. Dogge), r.h.j.peerlings@

tue.nl (R.H.J. Peerlings).

Mechanics of Materials 88 (2015) 30–43

Contents lists available at ScienceDirect

Mechanics of Materials

journal homepage: www.elsevier .com/locate /mechmat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2015.04.007&domain=pdf
http://dx.doi.org/10.1016/j.mechmat.2015.04.007
mailto:m.dogge@m2i.nl
mailto:r.h.j.peerlings@ tue.nl
mailto:r.h.j.peerlings@ tue.nl
http://dx.doi.org/10.1016/j.mechmat.2015.04.007
http://www.sciencedirect.com/science/journal/01676636
http://www.elsevier.com/locate/mechmat


Fleck and Hutchinson, 1997). Internal boundaries act as
barriers to dislocation motion, because a mismatch in glide
plane orientation or differences in the underlying crystal
lattices locally increase the stress required to transport
dislocations through the lattice. As more dislocations accu-
mulate near such a boundary, the repulsive stress exerted
by them increases, resulting in a pile-up against the
boundary (Roy et al., 2008). Depending on the accumulated
stress field, dislocations can interact with a boundary in a
number of ways, e.g. transmission, absorption, nucleation
or stagnation. They can further act as barriers to disloca-
tion motion, assist in overcoming the resistance of the
boundary, as well as activate sources in the neighboring
grain. When the interface spacing decreases, the effects
of these interactions are becoming more pronounced.

The objective of this article is to develop an interface
model that describes and captures the effect of interfaces
on dislocation transport, including relevant interaction
mechanisms between dislocations and interfaces, to
improve the predictive capabilities of crystal plasticity
models.

In lower-scale models like Molecular Dynamics (Zhang
and Wang, 1996; de Koning et al., 2003; Li et al., 1998)
and Discrete Dislocation Dynamics (Balint et al., 2008; Li
et al., 2009), the interaction of dislocations can be modeled
in an accurate way, because each individual dislocation (or
atom) is resolved. However, in a continuum description the
resolution is limited to the level of densities of dislocations
and the effect of dislocation motion and interactions with
other dislocations and interfaces must be incorporated at
this level. Many continuum frameworks have been pro-
posed which include dislocation and boundary mechanics,
see Cermelli and Gurtin (2002), Gudmundson (2004), Ma
et al. (2006), Gurtin (2008), Roters et al. (2010) and van
Beers et al. (2013).

However, the majority of these models do not explicitly
take into account the transport of dislocations, but solve for
the (plastic) incompatibility due to plastic slip, and relate
the gradients in plastic slip to the presence of
Geometrically Necessary Dislocations (GNDs).
Nonetheless, there are continuum models available consid-
ering the plastic deformation as the result of dislocation
motion (Groma et al., 2003; Kratochvíl and Sedlaček,
2008; Sedlček et al., 2007; Hochrainer et al., 2007). Based
thereon, a continuum dislocation transport model (Groma
et al., 2003; Yefimov et al., 2004) is adopted here, modeling
the transport of dislocations on their glide planes both in
the bulk and across the boundary. In Dogge et al.
(submitted for publication-a) a Finite Element Method
(FEM) framework was developed to solve the resulting
transport equations in single slip, including an extended
description of the relevant short-range dislocation–disloca-
tion interactions. This model was used to study the effect of
dislocation transport, and especially the dislocation interac-
tions, on the response of a two-phase laminate in Dogge
et al. (submitted for publication-b). The microstructure con-
sidered consisted of a soft and a hard phase with identical
elastic properties, but different plastic properties, i.e. a dif-
ferent resistance to dislocation motion. However, in this
two-phase microstructure the boundary between the two
phases was considered transparent, i.e. dislocations are

transmitted from one phase to the other without penalty.
In spite of this obvious simplification, size effects could still
be observed due to the dislocation–dislocation interactions
near the interface, as dislocation motion was more
restricted in the harder of the two phases.

In this paper, the continuum dislocation transport
framework is extended by treating the interface as an addi-
tional barrier to dislocation motion, which is physically
more relevant. An interface element is developed for this
purpose and the dislocation transport through this inter-
face is governed by an additional constitutive relation for
the dislocation flux in this interface element. The transmit-
ted interface flux depends on the difference in dislocation
density at both sides of the interface. To derive an expres-
sion for this dependence, an idealized configuration of infi-
nite edge dislocation walls is used, where the negative
walls are shifted with respect to the positive walls by half
of the internal wall spacing. This approach is inspired by
the methods presented by Dogge et al. (submitted for
publication-a), where interactions in the bulk material
were investigated. Using regularized dislocation stress
fields (Cai et al., 2006), and adopting continuous densities
in order to characterize the horizontal spacing of the walls,
an expression for the interaction stress at the interface is
derived. This stress drives the dislocation flux against a
resistance, which is assumed to be purely viscous and lin-
ear in the dislocation velocity.

The resulting contribution of this interface model is first
examined in a single-phase material with a single interface
between two identical phases, i.e. a ’grain boundary’. The
extended model is then used to model the dislocation
transport in an idealized two-phase laminate in which,
unlike in Dogge et al. (submitted for publication-b), the
phases are now separated by a discrete phase boundary
which presents additional resistance against dislocation
motion. In addition to the bulk properties, the influence
of interfacial properties on the macroscopic material
response is investigated.

The outline of this paper is as follows. In Section 2 the
microstructural configuration, the used continuum model
for dislocation transport and the novel interface model
are discussed. In Section 3 the role of the interface resis-
tance is investigated for identical phases separated by a
boundary. In Section 4 the influence of the interface on
the response of an idealized two-phase laminate is investi-
gated, along with a parameter study of the interfacial, bulk
and geometrical effects. Finally, in Section 5 the conclu-
sions are presented.

2. Interface modeling in continuum dislocation
transport

2.1. Microstructural model

An idealized representation of a two-phase microstruc-
ture is used as the starting point in the analysis of the
interface model (Cordero et al., 2010). The idealized
two-phase configuration used is shown in Fig. 1. A unit cell
of length L is deformed at a constant shear rate _C, resulting
in vertical displacements uðxÞ in the material. On the
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