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a b s t r a c t

We present a rigorous methodology for the compaction of crystallographic texture data
associated with a given material volume and show that a statistical orientation distribution
function (ODF) containing any number of orientations can be compacted to a significantly
smaller but representative set of orientations. This methodology is based on the spectral
representation of ODFs through the use of generalized spherical harmonic functions. The
Fourier coefficients of an initial full-size ODF can be matched with those of a more compact
but equivalent ODF. The reduced-size ODF contains a predetermined set of representative
orientations whose weights are adjusted using an algorithm for finding the closest
reduced-size ODF to a given full-size ODF. To demonstrate the accuracy of the methodol-
ogy, we consider three measured ODFs of two cubic metals (pure Cu and an Al alloy)
and a hexagonal metal (pure Zr) and then subsequently perform plane strain and simple
compression simulations with both the initial ODFs and the reduced-size ODFs. We quan-
titatively demonstrate that texture evolution and stress–strain response simulated with
reduced-size ODFs are in excellent agreement with those simulated with initial full-size
ODFs.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Crystallographic texture (also called the orientation dis-
tribution function, or the ODF) is an important feature of
the microstructure in polycrystalline materials known to
have a strong influence on the anisotropy of various mate-
rial properties (Adams and Olson, 1998; Bhattacharyya
et al., 2015; Bunge, 1993; Fromm et al., 2009;
Fuentes-Cobas et al., 2013; Jahedi et al., 2014; Knezevic
et al., 2014a; Kocks et al., 1998). Therefore, anisotropic
material models must consider the distribution of crystal
orientations. In particular, modeling the anisotropy of plas-
tic properties requires consideration of the crystal struc-

ture and orientation because of their roles in the
activation of micro-scale deformation mechanisms
(Taylor, 1938). A number of polycrystal plasticity material
models have been developed to predict material response
based on the crystallography of deformation mechanisms
and the distribution of crystal orientations. These models
are classified based on the homogenization scheme
that links the grain scale response to the response of a
polycrystalline aggregate to the mean-field models of
self-consistent (Lebensohn and Tomé, 1993; Lebensohn
et al., 2007) and Taylor type (Knezevic et al., 2008a;
Taylor, 1938; Van Houtte et al., 2004) and the full-field
models of finite-element (FE) (Kalidindi et al., 1992;
Knezevic et al., 2014c; Roters et al., 2010) and Green’s
function fast Fourier transform (FFT) type (Lebensohn
et al., 2012). Since they are physically based and able to
capture the evolution of the crystallographic texture, these
models are important for understanding microstructural
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processes and associated effects on plasticity (Asaro and
Needleman, 1985; Roters et al., 2010). As such, they are
also highly desirable for performing accurate simulations
of metal forming processes. Example applications include
simple compression and tension tests (Beaudoin et al.,
1993; Knezevic et al., 2012b), bending (Knezevic et al.,
2013c,d,e), cup-drawing (Balasubramanian, 1996; Raabe
and Roters, 2004), sheet hydroforming (Beaudoin et al.,
1994), and bulk forming (Jahedi et al., 2015a; Knezevic
et al., 2014d; Kumar and Dawson, 1995; Zecevic et al.,
2015b). However, performing complex metal forming pro-
cess simulations with polycrystal plasticity is recognized
as a vast computational challenge because of the need for
(1) specialized Newton–Raphson iterative schemes to
solve sets of highly non-linear, extremely stiff constitutive
equations with poor convergence characteristics for every
constituent crystal at every material point and at each trial
time increment and (2) storing large sets of state variables
related to texture data. For example, the computational
time involved in simulating a simple compression up to a
strain of 0.2 with about 1000 elements and 1000 grains
at an integration point is approximately 60 h on a regular
PC (Knezevic et al., 2013d). Clearly, speedups are necessary
to render metal forming simulations with polycrystal plas-
ticity constructive laws practical.

From the numerical implementation point of view,
several strategies have been explored to speed up the poly-
crystal plasticity calculations. Database approaches that
store precompiled solutions in the form of spectral coeffi-
cients of the generalized spherical harmonics (GSH) basis
(Kalidindi et al., 2006; Knezevic et al., 2008b; Shaffer
et al., 2010; Wu et al., 2007) and the fast Fourier transform
bases (Al-Harbi et al., 2010; Knezevic et al., 2009; Zecevic
et al., 2015a) improved the speed for about two orders of
magnitude. A process plane concept, based on proper
orthogonal decomposition in Rodrigues–Frank space, has
been presented in Sundararaghavan and Zabaras (2007).
Other attempts to improve efficiency of the polycrystal
plasticity codes rely on adaptive sampling algorithms and
building a database that constantly updates itself (Barton
et al., 2011, 2008). The latter methods improved the speed
by about an order of magnitude. It has recently been
shown that solving polycrystal plasticity using the
Jacobian-Free Newton–Krylov (JFNK) technique in place
of the Newton–Raphson method can yield some computa-
tional benefits (Chockalingam et al., 2013). Recently, we
have successfully developed a high performance computa-
tional application of the databases approach containing
discrete Fourier transforms that runs on graphic processing
units (GPUs) (Mihaila et al., 2014). We have also developed
an improved version that has the advantage of an efficient
GPU8 algorithm for matrix–matrix multiplication
(Knezevic and Savage, 2014). The latter implementation
resulted in a major improvement in computational speed,
exceeding three orders of magnitude over the conventional
numerical schemes.

Because the computational time involved in crystal
plasticity calculations scale linearly with the number of
crystal orientations, the numerical schemes summarized
above can further benefit from the data compaction tech-
nique aimed at minimizing the amount of state variables

related to texture data. Experimental techniques for acqui-
sition of texture data produce data sets consisting of large
numbers of single crystal orientations (Jahedi et al., 2015b;
Knezevic et al., 2010; Lentz et al., 2015a,b). The use of such
large discrete single crystal orientations in subsequent
crystal plasticity simulations is not practical, and we will
show not necessary for capturing plastic anisotropy and
concomitant evolution of texture. We develop a procedure
for the reduction of texture data described in the form of
statistical distributions (ODFs) to a level of computation-
ally manageable but representative statistical distributions
where qualitatively and quantitatively sufficient details
can be recovered without losing any physical significance.
The developed procedure is independent on techniques
used to determine the measured full-size ODFs. The tech-
niques for measuring ODF are broadly classified according
to whether they measure macro-texture or micro-texture.
The former includes X-ray diffraction (XRD) and neutron
diffraction while the latter is based on electron backscat-
tered diffraction (EBSD).

Quantitatively an ODF can be expressed by a weighted
set of discrete orientations. To this end, a fundamental
problem is determining a statistically significant set of dis-
crete orientations. A number of studies for estimating the
minimum number of crystal orientations representing an
ODF have been conducted in the past (Baudin et al.,
1995; Baudin and Penelle, 1993; Pospiech et al., 1994;
Wright and Adams, 1990). The most promising methodol-
ogy was based on an appropriately defined error difference
between a macroscopically measured ODF and an ODF
constructed from experimentally measured individual
grain orientations (Baudin et al., 1995; Pospiech et al.,
1994). The number of orientations in the constructed
ODF was systematically increased until the error was min-
imized ensuring that the newly constructed ODF is statisti-
cally significant. The estimated number of orientations
varied with a given ODF. Part of the reason for this varia-
tion is because weights of individual orientations were
not adjusted.

The procedure developed in this paper is based on the
spectral representation of ODFs using the GSH bases. A
given ODF containing any number of orientations is repre-
sented by corresponding Fourier coefficients as a point in
an infinite-dimensional Fourier space. We refer to this
point as the target point, or the full-size target ODF. We
recognize that the Fourier coefficients of the given/target
full-size ODF can be matched with those of another equiv-
alent ODF using algorithms for finding the closest
reduced-size ODF to the target ODF. This key recognition
led to the development of a procedure capable of reducing
large datasets of crystal orientations. In our approach, the
procedure starts by selecting a set of crystal orientations
that cover an orientation space and delineating the com-
plete set of all physically realizable textures using the
selected orientations. The delineated space is referred to
as the texture hull (Kalidindi et al., 2004; Knezevic and
Kalidindi, 2007; Lyon and Adams, 2004; Wu et al., 2007)
and must contain the target ODF. We then solve a linear
programming problem to match the Fourier coefficients
of the given ODF with those of an equivalent ODF. The
methodology takes advantage of the linearity of the Fourier
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