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a b s t r a c t

Adhesion between a spherical rigid particle and an incomprssible elastic substrate is
studied on the basis of the Lennard–Jones (L–J) potential, and the aim is to explore
limitations of the well-known Derjaguin approximation. A new expression of the adhesive
force is derived, in which the contribution from the elastic deformation of the substrate is
incorporated naturally. Numerical results show that the Derjaguin approximation is valid
down to particle radii of the order of the interaction range.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Adhesion between elastic bodies induced by some types
of interactions has been studied extensively in the past
years. The early theoretical models commonly emphasize
an explicit contact zone but differ substantially in the
assumption of adhesive forces. For example, the Johnson–
Kendall–Roberts (JKR) model (Johnson et al., 1971) as-
sumed that adhesive force acts only within the contact
zone, while the Derjaguin–Muller–Toporov (DMT) model
(Derjaguin et al., 1975) accounted for adhesive force acting
only outside the contact zone. As pointed out by Tabor
(1977), the two theories applied to opposite extremes of
a spectrum of a dimensionless parameter (called Tabor
number). In the cases with intermediate Tabor number,
the Lennard-Jones potential was adopted to model the
adhesion force (Greenwood, 1977; Muller et al., 1980), un-
der the Derjaguin approximation that the interaction
energy between small areas of curved or slightly inclined
solid surfaces is the same as the energy per unit area
between infinite plane solids (Derjaguin, 1934). The
analytical solution to the problem finally leads to the
Maugis–Dugdale (MD) model (Maugis, 1992) which can
give the transition between the JKR and DMT models.

The Derjaguin approximation is a useful tool in simplify-
ing the calculation of adhesive force between solids with
complicated shapes. However, less is known quantitatively
about the limitations of this approximation (Greenwood,
2009). The difficulty arises from the fact that the adhesive
force depends on the deformed configuration of the solids
which is, reversely, determined by the force. For rigid
bodies of unchanged shapes, the interaction can be trans-
formed into certain surface tractions (Argento et al., 1997)
or calculated by directly summing intermolecular interac-
tions over the volume (Yao et al., 2008). Yet, for solids of fi-
nite stiffness, the problem becomes difficult to handle
because both the adhesive force and deformed configura-
tion are coupled with each other and are unknown a priori.
Recently, Wu (2006) considered intermolecular adhesion
between a rigid sphere and an elastic half-space based on
the L–J potential. The study describes the adhesive force
through its counterpart for rigid bodies (Argento et al.,
1997) by adding the normal surface displacement of the
substrate to the particle-substrate separation. Although
the exact particle geometry is accounted for in comparison
with the work by Greenwood (2009), the effect of substrate
deformation is incorporated in the same way as before. The
accuracy of such a treatment remains unclear.

The objective of this paper is to explore the limitations
of the Derjaguin approximation. For simplicity and com-
parison, our attention is focused on adhesion between a
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spherical rigid particle and an incompressible elastic sub-
strate. The fundamental L–J potential is utilized to charac-
terize the intermolecular interaction. In this case we are
able to derive the adhesive force via a variational method
without introducing any other assumptions than small
deformation of the substrate. Since the initial and de-
formed configurations of the substrate are distinguished,
the adhesive force involves the contribution from substrate
deformation naturally. Omitting the tangential compo-
nents of the adhesive force, the adhesion behavior is inves-
tigated numerically for various particle sizes. A detailed
comparison indicates that the Derjaguin approximation is
of very high accuracy down to particle radii of the order
of the equilibrium distance for the L–J potential.

2. Theoretical formulation

The problem we considered is sketched in Fig. 1. A rigid,
sphere-shaped nanoparticle of radius R is fixed over an
incompressible elastic substrate occupying the half space
x3 < 0. The center of the particle is at (0,0,a), and the shear
modulus of the substrate is l. The particle and substrate are
in close proximity, so that they interact with each other
through intermolecular forces. A vertical external force F
needs to be applied to the particle so as to maintain the
mechanical equilibrium. We assume that the deformation
of the substrate is small, and denote the displacement com-
ponents by ui (i = 1,2, and 3). Since the external force F does
no work, the total energy U of the system is the sum of the
intermolecular interaction energy UI and the elastic defor-
mation energy UE of the substrate. We will derive the fun-
damental equations of the problem. The usual summation
convention is adopted, where a repeating Latin subscript
runs from 1 to 3 and a Greek one takes value of 1 or 2.

Our derivation is based on minimization of the total en-
ergy U, and thus requires the expressions of variations in UI

and UE. The variational of the elastic deformation energy,
dUE, can be written simply as (Landau and Lifshitz, 1959)

dUE ¼ �
Z

V

@rij

@xj
duidV þ

Z
A
ri3duidA; ð1Þ

where rij is stress component, V and A denote the volume
and surface of the undeformed substrate, respectively. The
stress rij relates to the displacement ui by rij =
�pdij + l(@ui/@xj + @uj/@xi), with p being the hydrostatic

pressure, and dij standing for the Kronecker’s delta that
equals 1 for i = j and 0 for i – j. To involve the effect of sub-
strate deformation in the interaction energy UI, we have to
distinguish the deformed and undeformed states of the
substrate. The volume and surface of the former are de-
noted by bV and bA, respectively, and a point ðx̂1; x̂2; x̂3Þ inbV relates to a point (x1,x2,x3) in V by x̂i ¼ xi þ ui. To charac-
terize the intermolecular interaction between the particle
and substrate, the L-J potential wL�J(s) = 4x[(r/s)12 � (r/
s)6] is invoked, in which x and r are two parameters and
s is the intermolecular distance (Israelachvili, 1991). The
interaction energy between the particle and a volume
element dbV centered at ðx̂1; x̂2; x̂3Þ in the deformed
substrate can be evaluated by direct integration as
q1q2WðlÞdbV with q1 and q2 being number densities of
molecules per unit volume in the particle and deformed
substrate, respectively,

WðlÞ ¼ 16pxr3

45n9d12

128

d6 þ
216

d4 þ
108

d2 þ 15
� �

� 16pxr3

3n3d6 ;

ð2Þ

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2

1 þ x̂2
2 þ ðx̂3 � aÞ2

q
, d and n are dimensionless param-

eters defined by

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � R2

p
R

; n ¼ R
r
: ð3Þ

From Eq. (2) it is known that the interaction energy be-
tween the particle and substrate reads UI ¼

R
V q1q2WðlÞdbV .

Due to the incompressibility of the substrate, q2 is a
constant and UI can be regarded as a functional UI ¼R

V q1q2WðlÞdV defined in the undeformed volume V with
x̂i being the variable functions. Accordingly, in light of
the relations @ðdx̂iÞ=@x̂i ¼ 0 and dx̂i ¼ dui, the variational
of UI is calculated as follows

dUI ¼
Z

V
q1q2

@WðlÞ
@x̂i

dx̂idV ¼
Z
bV q1q2

@WðlÞ
@x̂i

dx̂idbV
¼
Z
bV @

@x̂i
½q1q2WðlÞdx̂i� � q1q2WðlÞ

@

@x̂i
ðdx̂iÞ

� �
dbV

¼ �
Z

A
fiðxÞduidA; ð4Þ

in which x denotes a point on the surface A, and fi(x) are
defined by

faðxÞ ¼ q1q2Wðl0Þ
@u3

@xa
;

f3ðxÞ ¼ �q1q2Wðl0Þ 1� @u3

@x3

� �
;

ð5Þ

with l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 þ u1Þ2 þ ðx2 þ u2Þ2 þ ðu3 � aÞ2

q
. In passing

through the last result in Eq. (4), we have used the
divergence theorem as well as the Nanson’s formalism
n̂idA ¼ ðd3i � @u3=@xiÞdA, where n̂i are the components of
the unit vector normal to the deformed surface bA. Substi-
tuting Eqs. (1) and (4) into dUI + dUE = 0 and then making
use of the arbitrariness of dui, we arrive at

@rij

@xj
¼ 0; in V ;

ri3 ¼ fiðxÞ; on A:
ð6ÞFig. 1. A rigid nanoparticle located over an elastically incompressible

semi-infinite substrate. An external force is applied to maintain the
equilibrium.
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