
Author's Accepted Manuscript

Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy

Yu Chen, Hua Ding, Jizhong Li, Zhihui Cai, Jingwei Zhao, Wenjing Yang

www.elsevier.com/locate/msea

PII: S0921-5093(15)30519-0

DOI: http://dx.doi.org/10.1016/j.msea.2015.10.057

Reference: MSA32908

To appear in: Materials Science & Engineering A

Received date: 11 September 2015 Revised date: 14 October 2015 Accepted date: 15 October 2015

Cite this article as: Yu Chen, Hua Ding, Jizhong Li, Zhihui Cai, Jingwei Zhac and Wenjing Yang, Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2015.10.057

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy

Yu Chen¹, Hua Ding^{1,*}, Jizhong Li², Zhihui Cai¹, Jingwei Zhao³, Wenjing Yang¹
1. School of Materials and Metallurgy, Northeastern University, Shenyang
110819, PR China

- AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, PR China
 - School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522, Australia

Abstract

Samples with one through three passes with 100% overlap were created using friction stir processing (FSP) in order to locally modify the microstructure and mechanical properties of a cold-rolled Al-5083 alloy. A constant traverse speed and two different rotational speeds were used for processing. The results indicated that single-pass FSP caused dynamic recrystallization in the stir zone, leading to equiaxed grains with high angle grain boundaries. The grain size increased with increasing the rotational speed. The product of ultimate tensile strength and total elongation of the stir zone was significantly enhanced compared with that of the base metal. During the annealing heat treatment, abnormal grain growth (AGG) occurred throughout the stir zone when a low rotational speed was adopted. The stir zone produced with a high rotational speed was found to be more resistant to AGG. The application of multiple process passes did not change the grain size and mechanical properties of the stir zone significantly. The expanding of AGG in the stir zone was inhibited as the number of

Download English Version:

https://daneshyari.com/en/article/7976389

Download Persian Version:

https://daneshyari.com/article/7976389

Daneshyari.com