Author's Accepted Manuscript

Unusual behavior of the Portevin-Le Chatelier effect in an AlMg alloy containing precipitates

D.A. Zhemchuzhnikova, M.A. Lebyodkin, T.A. Lebedkina, R.O. Kaibyshev

www.elsevier.com

PII: S0921-5093(15)00501-8

DOI: http://dx.doi.org/10.1016/j.msea.2015.04.094

Reference: MSA32318

To appear in: Materials Science & Engineering A

Received date: 13 March 2015 Revised date: 28 April 2015 Accepted date: 28 April 2015

Cite this article as: D.A. Zhemchuzhnikova, M.A. Lebyodkin, T.A. Lebedkina and R.O. Kaibyshev, Unusual behavior of the Portevin-Le Chatelier effect in an AlMg alloy containing precipitates, *Materials Science & Engineering A*, http://dx.doi.org/10.1016/j.msea.2015.04.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Unusual behavior of the Portevin-Le Chatelier effect in an AlMg alloy

containing precipitates

D.A. Zhemchuzhnikova^{1,*}, M.A. Lebvodkin², T.A. Lebedkina², R.O. Kaibvshev¹

¹ Laboratory of Mechanical Properties of Nanoscale Materials and Superalloys, Belgorod State

University, Pobeda 85, Belgorod 308015, Russia

² Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3),

CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz, France

*Corresponding author. Tel.: +74 72 258 5456; fax: +74 72 258 5456, e-mail:

zhemchuzhnikova@bsu.edu.ru

Abstract

Stress serration patterns and kinematics of deformation bands associated with the Portevin–Le

Chatelier effect in an Al-Mg alloy were investigated by analyzing the evolution of the applied

stress and axial strain distribution. In contrast to usually observed strain localization behaviors,

referring to propagating and static deformation bands at high and low strain rates, respectively,

the propagation mode was found to persist in a wide strain-rate range. This unusual behavior is

discussed in relation with the role of precipitates.

Keywords: aluminum alloys; mechanical characterization; precipitation; plasticity; deformation

bands

1. Introduction

Due to their low weight and high mechanical strength, Al-Mg alloys are important

technological materials for diverse applications in transportation industry [1,2]. However, their

formability suffers from the phenomenon of plastic flow instability known as the Portevin-Le

Chatelier (PLC) effect [1,3]. It characterizes mechanical behavior of various alloys and is

generally attributed to dynamic strain aging (DSA), a mechanism caused by interaction between

the mobile solute atoms and dislocations [4]. The instability occurs in some ranges of

Download English Version:

https://daneshyari.com/en/article/7977487

Download Persian Version:

https://daneshyari.com/article/7977487

Daneshyari.com