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a b s t r a c t

In 2003 the authors proposed a model-reduction technique, called the Nonuniform
Transformation Field Analysis (NTFA), based on a decomposition of the local fields of
internal variables on a reduced basis of modes, to analyze the effective response of
composite materials. The present study extends and improves on this approach in dif-
ferent directions. It is first shown that when the constitutive relations of the constituents
derive from two potentials, this structure is passed to the NTFA model. Another structure-
preserving model, the hybrid NTFA model of Fritzen and Leuschner, is analyzed and found
to differ (slightly) from the primal NTFA model (it does not exhibit the same variational
upper bound character). To avoid the “on-line” computation of local fields required by the
hybrid model, new reduced evolution equations for the reduced variables are proposed,
based on an expansion to second order (TSO) of the potential of the hybrid model. The
coarse dynamics can then be entirely expressed in terms of quantities which can be pre-
computed once for all. Roughly speaking, these pre-computed quantities depend only on
the average and fluctuations per phase of the modes and of the associated stress fields.
The accuracy of the new NTFA-TSO model is assessed by comparison with full-field si-
mulations. The acceleration provided by the new coarse dynamics over the full-field
computations (and over the hybrid model) is then spectacular, larger by three orders of
magnitude than the acceleration due to the sole reduction of unknowns.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A common engineering practice in the analysis of composite structures is to use effective or homogenized
material properties instead of taking into account all details of the individual phase properties and geometrical
arrangement.

The homogenization of linear properties of composites is now a rather well-documented subject, supported by sig-
nificant theoretical advances. The reader is referred to Milton (2002) for a state-of-the art of the subject. Provided that the
length scales are well separated (i.e. when the typical length scale of the heterogeneities is small compared to the typical
length scale of the structure), the linear effective properties of a composite can be completely determined by solving once
for all a finite number of unit-cell problems (six in general). Then the analysis of a structure composed of such a composite
material can be performed using these pre-computed effective linear properties. In summary, the analysis of a linear
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composite structure consists of two totally independent steps, first an homogenization step at the unit-cell level only, and
second a standard structural analysis performed at the structure level only.

The situation is more complicated when the composite is made of individual constituents governed by two potentials,
free-energy and dissipation potential, accounting for reversible and irreversible processes respectively and evenworse when
one of these potentials (or both) is non-quadratic. The most common examples of such materials are viscoelastic or elasto-
viscoplastic materials. The overall response of the composite is history-dependent and this includes the history of local
fields. It has long been recognized by Rice (1970), Mandel (1972) or Suquet (1985), that the exact description of the effective
constitutive relations of such composites requires the determination of all microscopic plastic strains at the unit-cell level.
For structural computations, the consequence of this theoretical result is that the two levels of computation, the level of the
structure and the level of the unit-cell, remain intimately coupled. With the increase in computational power, numerical
FEM2 strategies for solving these coupled problems have been proposed (see Feyel and Chaboche, 2000; Terada and Kikuchi,
2001, for instance) but are so far limited by the formidable size of the corresponding problems.

A common practice to avoid these coupled computations is to investigate the response of representative volume ele-
ments by full-field methods and to use the response of these simulations to calibrate postulated phenomenological mac-
roscopic models. There is however a considerable arbitrariness in the choice of the macroscopic model and most of the huge
information generated by the full-field simulations is lost, or discarded.

An alternative line of thought consists in viewing the equations for the local plastic field as a system of ordinary dif-
ferential equations (an infinite number of them, or a large number after discretization) at each integration point of the
structure. It is therefore quite natural to resort to model-reduction techniques to reduce the complexity of the local plastic
strain fields. Reduced-order models aim at achieving a compromise between analytical approaches, which are costless but
often very limited by nonlinearity, and full-field simulations which resolve all complex details of the exact solutions, even
though they are not always essential to the understanding of the problem, but come at a very high cost. Model-reduction
has a long history in Fluid Mechanics (see Sirovich, 1987; Holmes et al., 1996, for instance) and in many other fields of
computational physics (Lucia et al., 2004). Its use in Solid Mechanics is more recent (see Ryckelynck and Benziane, 2010;
Chinesta and Cueto, 2014, and the references herein).

One of the earliest, and pioneering, attempt to reduce the complexity of the plastic strain fields in micromechanics of
materials is the Transformation Field Analysis (TFA) of Dvorak (1992) which assumes uniformity of the plastic strain in the
phases or in subdomains. It has been further developed in Dvorak et al. (1994), extended to periodic composites by Fish et al.
(1997) and has been incorporated successfully in structural computations (Dvorak et al., 1994; Fish and Yu, 2002; Kattan and
Voyiadjis, 1993). However, the assumption of uniform plastic strain fields is far from reality and in order to reproduce
accurately the actual effective behavior of the composite, it is essential to capture correctly the heterogeneity of the plastic
strain field which requires a large number of subdomains.

This last observation has motivated the introduction in Michel et al. (2000) and Michel and Suquet (2003) of the
Nonuniform Transformation Field Analysis (NTFA) where the (visco)plastic strain field within each phase is decomposed on
a finite set of plastic modes which can present large deviations from uniformity. The reduced variables are the components
of the (visco)plastic strain field on the (visco)plastic modes. Approximate evolution laws for these variables have been
proposed (Michel and Suquet, 2003, 2009). A significant advantage of the NTFA is that it provides localization rules allowing
for the reconstruction of local fields which are used to predict local phenomena such as the distribution of stresses or the
plastic dissipation at the microscopic scale (Michel and Suquet, 2009). This model, which will be called the original NTFA
model, was first applied to two-dimensional situations by Michel and Suquet (2003, 2004, 2009). It has subsequently been
applied to three-dimensional problems by Fritzen and Böhlke (2010) and extended to phases with transformation strains by
Largenton et al. (2014). A step towards a more rational derivation of the evolution equation for the reduced variables has
been achieved by Fritzen and Leuschner (2013), who proposed a hybrid form of the incremental variational principles for
materials governed by two potentials. Their extension of the original NTFA model is discussed in the present paper (Section
5) and has motivated some of the developments here, as will be explained.

The NTFA model consists of two main steps:

1. In a first step, common to all reduced-order models, a reduced basis has to be selected (the element of this basis are called
modes). However, by contrast with most other model-reduction techniques (see Radermacher and Reese, 2014, for
instance), the natural variables for the decomposition are the internal variables and not the displacement (or velocity)
field. Several methods are available to construct this basis, in which the modes are either identified once for all, or are
enriched “on-the-fly”. The selection of modes is not our main purpose here and it will be assumed that these modes have
been identified separately, in a preliminary step of the reduced-order model. The snapshot Proper Orthogonal
Decomposition (POD) will be used in the present study. The reduced variables are the components of the fine variables,
which are the fields of internal variables, on these modes.

2. In a second step, reduced evolution equations (evolution equations for the reduced variables) have to be derived, a problem
which can be alternatively described as defining the “coarse dynamics” from the “fine dynamics”. Actually in several
reduced-order models this step is omitted (and not even mentioned) and the coarse dynamics is simply obtained by
computing the fine variables and applying the fine dynamics to them. This requires the “on-line” evaluation of the fine
variables (in the course of the computation of the coarse variables) and can be very costly, at least in the micromechanical
problems that we have in mind. The hybrid model of Fritzen and Leuschner (2013) belongs to this category and requires
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