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a b s t r a c t

In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic
half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the
frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of
spherical or ellipsoidal shape, the later being of any orientation relatively to the contact
surface. The model presented here is three dimensional and based on semi-analytical
methods. In order to take into account the viscoelastic aspect of the problem, contact
equations are discretized in the spatial and temporal dimensions. The frictionless rolling of
the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating
the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is ap-
plied at each step of the temporal discretization to account for the effect of the in-
homogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the
resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to
reduce the computation cost. The model is validated by a finite element model of a rigid
sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison
with reference solutions from the literature. A parametric analysis of the effect of elastic
properties and geometrical features of the inhomogeneity is performed. Transient and steady-
state solutions are obtained. Numerical results about the contact pressure distribution, the
deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are
presented, with or without heterogeneous inclusion.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Polymer based materials are extensively used in several engineering domains due to their numerous advantages such as low
cost of raw materials and less complex manufacturing, low weight, and compatibility with most liquids and lubricants. They are
also sometimes biocompatible or biodegradable. In order to increase some of their mechanical properties these materials can be
reinforced by adding small particles or fibers. Since Hunter (1961), it is well known that (frictionless) rolling over a viscoelastic
material induces an apparent friction coefficient. This apparent friction has been studied by several authors in the case of
homogeneous viscoelastic solid, mostly in the steady-state regime.
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The first works on viscoelastic contact focused on the indentation problem between a rigid indenter and a viscoelastic solid. Lee
and Radok (1960) obtained the contact pressure distribution for the spherical indentation of a linear viscoelastic material for a
monotonic increase of the contact area. Their model has been extended by Hunter (1960) and Graham (1967) to the indentation of
viscoelastic materials when the contact radius possesses a single maximum. More recently Greenwood (2010) introduced a model
to solve the contact problem between an axisymmetric indenter and a viscoelastic half-space. The analytical solution of the
rebound indentation problem for a linear viscoelastic layer has been given by Argatov (2012). One of the main limitations of all the
approaches mentioned above is their restriction to ideal linear viscoelastic materials with one relaxation time. Chen et al. (2011)
recently introduced a robust semi-analytical approach to solve indentation problems between a rigid indenter and a homogeneous
viscoelastic half-space. The semi-analytical approach allows to account for a wide spectra of relaxation times for linear viscoelastic
materials, an arbitrary loading profile and can also be used to simulate the contact between rough surfaces. The semi-analytical
approach was recently extended to solve the indentation problem between a rigid indenter and a heterogeneous viscoelastic
material (Koumi et al., 2014a). The model can account for the presence of isotropic or anisotropic elastic ellipsoidal in-
homogeneities of any orientation within the viscoelastic matrix.

Other authors investigated the steady-state response of the frictionless rolling contact problem when one of the bodies in
contact is homogeneous and viscoelastic. The two-dimensional contact problem of a rigid cylinder rolling over a viscoelastic half-
space was first solved by Hunter (1961). His plane strain model was limited to an ideal viscoelastic material with one relaxation
time. Later, Panek and Kalker (1980) extended Hunter's approach to three-dimensional problems by using an approximation based
on the elastic line contact theory (Kalker, 1972, 1977; Panek and Kalker, 1977). This assumption represents a very strong ap-
proximation. Goriacheva (1973) used another approach to solve the rolling contact problem between a cylindrical rigid indenter
and viscoelastic halfspace. The three-dimensional sliding contact problem of a smooth indenter and a viscoelastic halfspace has
been solved later by Aleksandrov et al. (2010). The contact pressure distribution and the resulting torque are presented in the case
of an ideal viscoelastic material with one relaxation time. Persson (2010) presented a new analytical theory for the rolling contact

Nomenclature

Letters

an contact radius
a1, a2, a3 semi-axes of an ellipsoidal inhomogeneity
Bijkl influence coefficients that relating the stress

sij at point x x x( , , )1 2 3 to the constant eigen-
strain at the point x x x( , , )k k k

1 2 3

Cijkl
M

, Cijkl
I

elastic constants of the matrix and the
inhomogeneity

EI Young's modulus of the inhomogeneity
h distance between the two surfaces of the

contacting bodies
H(t) the Heaviside step function
Iijkl the fourth-order identity tensor
J(t) viscoelastic creep function
Kn coefficients in the normal displacement at the

contact surface due to the contact pressure
Mij influence coefficients relating the stress sij at

the point x x x( , , )1 2 3 to the normal traction sn

within a discretized area centered at x x( , , 0)k k
1 2

n1, n2, n3 grid sizes in the half-space along the Cartesian
directions x1, x2, x3, respectively

P0 maximum Hertzian pressure
p contact pressure distribution
D indenter diameter
R(t) viscoelastic relaxation function
Sijkl components of Eshelby's tensor
ui
0

displacements corresponding to the infinite
applied strain εij

0

ui disturbed contribution of the displacements
W applied exterior load
dx3 depth of the inclusion from the surface of the

matrix in EF model
x x x x( , , )I I I I

1 2 3= Cartesian coordinates of the inclusion

center

Greek letters

εij
0

infinite applied strain
εij strain due to eigenstrains

ijε ⁎ eigenstrain due to the presence of
inhomogeneities

sij
0

stress corresponding to the infinite applied
strain εij

0

sij disturbed contribution of the stresses
ϕ, Ψ harmonic and biharmonic potentials of mass

density ijε ⁎

δij Kronecker symbol
sn normal pressure due to the summation of both

symmetric inclusions
x1Δ , x2Δ half-size of the discretized surface area

νM, νI Poisson's ratio of the matrix M and the inclu-
sion I

γ the ratio of the inhomogeneity Young's mod-
ulus to the matrix

η the dashpot viscosity
τ the relaxation time
θ the tilted angle of the inhomogeneity in the

x Ox1 3 plane

Acronyms and fast Fourier transforms

2D-FFT two-dimensional fast Fourier transform
3D-FFT three-dimensional fast Fourier transform
FFT�1 inverse FFT operation
Bijkl frequency response of coefficients Bijkl in the

frequency domain
Mij frequency response of coefficients Mij in the

frequency domain
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